[1] WANG T H, YANG T F, KAO C H, et al. Paraffin core-polymer shell micro-encapsulated phase change materials and expanded graphite particles as an enhanced energy storage medium in heat exchangers[J]. Advanced Powder Technology, 2020, 31(6): 2421-2429. [2] ISMAIL M, ZAHRA W K, OOKAWARA S, et al. Enhancing the air conditioning unit performance via energy storage of different inorganic phase change materials with hybrid nanoparticles[J]. JOM, 2023, 75(3): 739-753. [3] ELBAHJAOUI R, EL QARNIA H. Performance evaluation of a solar thermal energy storage system using nanoparticle-enhanced phase change material[J]. International Journal of Hydrogen Energy, 2019, 44(3): 2013-2028. [4] OLABI A G, ELSAID K, SAYED E T, et al. Application of nanofluids for enhanced waste heat recovery: a review[J]. Nano Energy, 2021, 84: 105871. [5] COLANGELO G, FAVALE E, MILANESE M, et al. Cooling of electronic devices: nanofluids contribution[J]. Applied Thermal Engineering, 2017, 127: 421-435. [6] TARAFDAR A, SIROHI R, NEGI T, et al. Nanofluid research advances: preparation, characteristics and applications in food processing[J]. Food Research International, 2021, 150(Pt A): 110751. [7] ZEINELABDEIN R, OMER S, MOHAMED E. Parametric study of a sustainable cooling system integrating phase change material energy storage for buildings[J]. Journal of Energy Storage, 2020, 32: 101972. [8] LI Y X, LI C C, LIN N Z, et al. Review on tailored phase change behavior of hydrated salt as phase change materials for energy storage[J]. Materials Today Energy, 2021, 22: 100866. [9] ANSARI H R, ZAREI M J, SABBAGHI S, et al. A new comprehensive model for relative viscosity of various nanofluids using feed-forward back-propagation MLP neural networks[J]. International Communications in Heat and Mass Transfer, 2018, 91: 158-164. [10] KOCA H D, DOGANAY S, TURGUT A, et al. Effect of particle size on the viscosity of nanofluids: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 1664-1674. [11] DONG X, MAO J F, GENG S B, et al. Study on performance optimization of sodium sulfate decahydrate phase change energy storage materials[J]. Journal of Thermal Analysis and Calorimetry, 2021, 143(6): 3923-3934. [12] DONG X, MAO J F, GENG S B, et al. Microencapsulation of sodium sulfate decahydrate composite phase-change energy storage materials[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(14): 7709-7718. [13] MOUSAVI S M, ESMAEILZADEH F, WANG X P. Effects of temperature and particles volume concentration on the thermophysical properties and the rheological behavior of CuO/MgO/TiO2 aqueous ternary hybrid nanofluid[J]. Journal of Thermal Analysis and Calorimetry, 2019, 137(3): 879-901. [14] NUAMPAKDEE N, SINCHAI S, GAMONPILAS C. Effect of alumina addition on the rheological behavior of shear thickening fluids[J]. Key Engineering Materials, 2019, 798: 331-336. [15] AFSHARI A, AKBARI M, TOGHRAIE D, et al. Experimental investigation of rheological behavior of the hybrid nanofluid of MWCNT-alumina/water (80%)-ethylene-glycol (20%)[J]. Journal of Thermal Analysis and Calorimetry, 2018, 132(2): 1001-1015. [16] SAEEDI A H, AKBARI M, TOGHRAIE D. An experimental study on rheological behavior of a nanofluid containing oxide nanoparticle and proposing a new correlation[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 99: 285-293. [17] TIE J, LIU X, TIE S N, et al. Packing and properties of composite phase change energy storage materials based on SiC nanowires and Na2SO4·10H2O[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(2): 855-862. [18] LIU X, TIE J, ZHANG J Q, et al. Preparation and properties of porous diatomite-supported multi-walled carbon nanotubes with Na2SO4·10H2O-based phase change energy storage composites[J]. SN Applied Sciences, 2019, 1(7): 710. [19] JIANG Z P, TIE S N. Preparation and thermal properties of Glauber’s salt-based phase-change materials for Qinghai-Tibet Plateau solar greenhouses[J]. International Journal of Modern Physics B, 2017, 31(16/17/18/19): 1744085. [20] GU B M, WANG Z L, LU Z X, et al. Investigation of thermal conductivity of nanofluids using different experimental methodologies[J]. Advanced Materials Research, 2012, 468/469/470/471: 2042-2046. [21] PALWASHA Z, ISLAM S, KHAN N S, et al. Non-Newtonian nanoliquids thin-film flow through a porous medium with magnetotactic microorganisms[J]. Applied Nanoscience, 2018, 8(6): 1523-1544. [22] AHMED S F, KHALID M, RASHMI W, et al. Recent progress in solar thermal energy storage using nanomaterials[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 450-460. |