[1] CAI Z X, SU L, WANG H J, et al. Alternating multilayered Si3N4/SiC aerogels for broadband and high-temperature electromagnetic wave absorption up to 1 000 ℃[J]. ACS Applied Materials & Interfaces, 2021, 13(14): 16704-16712. [2] CHENG Y H, TAN M Y, HU P, et al. Strong and thermostable SiC nanowires/graphene aerogel with enhanced hydrophobicity and electromagnetic wave absorption property[J]. Applied Surface Science, 2018, 448: 138-144. [3] ZHANG Z H, CHENG L S, SHENG T Y, et al. SiC nanofiber-coated carbon/carbon composite for electromagnetic interference shielding[J]. ACS Applied Nano Materials, 2022, 5(1): 195-204. [4] LIU M P, LUO Y P, XU L, et al. Hollow-structured Si/SiC@C nanospheres as highly active catalysts for cycloaddition of epoxides with CO2 under mild conditions[J]. Dalton Transactions, 2016, 45(6): 2369-2373. [5] ZHOU P, CHEN J H, LIU M, et al. Microwave absorption properties of SiC@SiO2@Fe3O4 hybrids in the 2~18 GHz range[J]. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(7): 804-813. [6] WANG B L, LIAO H Y, XIE X B, et al. Bead-like cobalt nanoparticles coated with dielectric SiO2 and carbon shells for high-performance microwave absorber[J]. Journal of Colloid and Interface Science, 2020, 578: 346-357. [7] XIANG Z N, WANG Y Q, YIN X M, et al. Microwave absorption performance of porous heterogeneous SiC/SiO2 microspheres[J]. Chemical Engineering Journal, 2023, 451: 138742. [8] SHI Y F, ZHANG F, HU Y S, et al. Low-temperature pseudomorphic transformation of ordered hierarchical macro-mesoporous SiO2/C nanocomposite to SiC via magnesiothermic reduction[J]. Journal of the American Chemical Society, 2010, 132(16): 5552-5553. [9] TAO J Q, ZHOU J T, YAO Z J, et al. Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties[J]. Carbon, 2021, 172: 542-555. [10] LIU N, DOU Y Y, ZHANG X Y, et al. Design of porous FeNi-carbon nanosheets by a double-effect synergistic strategy for electromagnetic wave absorption[J]. Carbon, 2022, 190: 125-135. [11] ZHOU J T, WEI B, YAO Z J, et al. Preparation of hollow SiC spheres with biological template and research on its wave absorption properties[J]. Journal of Alloys and Compounds, 2020, 819: 153021. [12] DONG Z P, LE X, LI X L, et al. Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2-nitroaniline[J]. Applied Catalysis B: Environmental, 2014, 158/159: 129-135. [13] LAN X L, WANG Z J. Efficient high-temperature electromagnetic wave absorption enabled by structuring binary porous SiC with multiple interfaces[J]. Carbon, 2020, 170: 517-526. [14] FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B, 2000, 61(20): 14095-14107. [15] WU R B, ZHA B L, WANG L Y, et al. Core-shell SiC/SiO2 heterostructures in nanowires[J]. Physica Status Solidi (A), 2012, 209(3): 553-558. [16] HAN M K, YIN X W, HOU Z X, et al. Flexible and thermostable graphene/SiC nanowire foam composites with tunable electromagnetic wave absorption properties[J]. ACS Applied Materials & Interfaces, 2017, 9(13): 11803-11810. [17] ZHANG M, LIN H, DING S Q, et al. Net-like SiC@C coaxial nanocable towards superior lightweight and broadband microwave absorber[J]. Composites Part B: Engineering, 2019, 179: 107525. [18] NGO D T, LE H T T, PHAM X M, et al. Facile synthesis of Si@SiC composite as an anode material for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(38): 32790-32800. [19] WANG P, CHENG L F, ZHANG Y N, et al. Electrospinning of graphite/SiC hybrid nanowires with tunable dielectric and microwave absorption characteristics[J]. Composites Part A: Applied Science and Manufacturing, 2018, 104: 68-80. [20] LIU Y N, LIU Y, CHOI W C, et al. Highly flexible, erosion resistant and nitrogen doped hollow SiC fibrous mats for high temperature thermal insulators[J]. Journal of Materials Chemistry A, 2017, 5(6): 2664-2672. [21] LIANG L L, GU W H, WU Y, et al. Heterointerface engineering in electromagnetic absorbers: new insights and opportunities[J]. Advanced Materials, 2022, 34(4): 2106195. [22] HUO Y S, ZHAO K, MIAO P, et al. Construction of tunable and high-efficiency microwave absorber enabled by growing flower-like TiO2 on the surface of SiC/C nanofibers[J]. Journal of Solid State Chemistry, 2021, 304: 122553. [23] WANG P, CHENG L F, ZHANG Y N, et al. Flexible SiC/Si3N4 composite nanofibers with in situ embedded graphite for highly efficient electromagnetic wave absorption[J]. ACS Applied Materials & Interfaces, 2017, 9(34): 28844-28858. [24] QUAN B, LIANG X H, XU G Y, et al. A permittivity regulating strategy to achieve high-performance electromagnetic wave absorbers with compatibility of impedance matching and energy conservation[J]. New Journal of Chemistry, 2017, 41(3): 1259-1266. [25] ALIEV K S, KULIEV M M, ISMAIILOVA R S, et al. Electric conductivity and dielectric dispersion of polyvinylchloride-graphite composites[J]. Surface Engineering and Applied Electrochemistry, 2018, 54(2): 117-124. [26] KANG Y, JIANG Z H, MA T, et al. Hybrids of reduced graphene oxide and hexagonal boron nitride: lightweight absorbers with tunable and highly efficient microwave attenuation properties[J]. ACS Applied Materials & Interfaces, 2016, 8(47): 32468-32476. [27] SINGH S, MAURYA A K, GUPTA R, et al. Improved microwave absorption behavioral response of Ni/SiC and Ni/SiC/graphene composites: a comparative insight[J]. Journal of Alloys and Compounds, 2020, 823: 153780. [28] YE X L, CHEN Z F, LI M, et al. Microstructure and microwave absorption performance variation of SiC/C foam at different elevated-temperature heat treatment[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(22): 18395-18404. [29] WEI B, ZHOU J T, YAO Z J, et al. The effect of Ag nanoparticles content on dielectric and microwave absorption properties of β-SiC[J]. Ceramics International, 2020, 46(5): 5788-5798. [30] YE X L, CHEN Z F, AI S F, et al. Enhanced electromagnetic absorption properties of novel 3D-CF/PyC modified by reticulated SiC coating[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11386-11395. [31] ZHANG X J, ZHU J Q, YIN P G, et al. Tunable high-performance microwave absorption of Co1-x S hollow spheres constructed by nanosheets within ultralow filler loading[J]. Advanced Functional Materials, 2018, 28(49): 1800761. [32] LIU J, TAO J Q, GAO L L, et al. Morphology-size synergy strategy of SiC@C nanoparticles towards lightweight and efficient microwave absorption[J]. Chemical Engineering Journal, 2022, 433: 134484. [33] LIANG C Y, WANG Z J. Controllable fabricating dielectric-dielectric SiC@C core-shell nanowires for high-performance electromagnetic wave attenuation[J]. ACS Applied Materials & Interfaces, 2017, 9(46): 40690-40696. [34] ZHANG K, WU F, XIE A M, et al. In situ stringing of metal organic frameworks by SiC nanowires for high-performance electromagnetic radiation elimination[J]. ACS Applied Materials & Interfaces, 2017, 9(38): 33041-33048. [35] KUANG J, XIAO T, HOU X, et al. Microwave synthesis of worm-like SiC nanowires for thin electromagnetic wave absorbing materials[J]. Ceramics International, 2019, 45(9): 11660-11667. [36] MI Y S, CHEN Y, ZHENG Z S, et al. Dielectric response and microwave absorption properties of SiCw/SiCf composites derived from carbon fiber[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(1): 442-452. [37] SINGH S, KUMAR A, SINGH D. Enhanced microwave absorption performance of SWCNT/SiC composites[J]. Journal of Electronic Materials, 2020, 49(12): 7279-7291. [38] SINGH S, KUMAR A, AGARWAL S, et al. Synthesis and tunable microwave absorption characteristics of flower-like Ni/SiC composites[J]. Journal of Magnetism and Magnetic Materials, 2020, 503(C): 166616. |