[1] LEI C K, XIAO G Q, DING D H, et al. One-step synthesis of core-shell structured CNFs@CAC with excellent water wettability and oxidation resistance[J]. Applied Surface Science, 2022, 573: 151497. [2] LEI C K, DING D H, XIAO G Q, et al. One step synthesis and characterization of high aspect ratio network-like carbon nanotubes containing calcium aluminate cement composite powders[J]. Journal of Alloys and Compounds, 2021, 850: 156454. [3] LUO J Y, REN X M, CHONG X C, et al. Recent progress in synthesis of composite powders and their applications in low-carbon refractories[J]. Journal of Iron and Steel Research International, 2022, 29: 1041-1051. [4] LUO J Y, XIAO G Q, DING D H, et al. Pyrolysis mechanism of magnesium citrate nonahydrate and microstructural evolution during the process[J]. Ceramics International, 2021, 47(21): 29607-29619. [5] NAKASHIMA M, ISOBE T, ITOSE S, et al. Improving the corrosion resistance of alumina-spinel castable by spinel additions[J]. Journal of the Technical Association of Refractories, Japan, 2001, 21(3): 155-161. [6] DÍAZ L A, TORRECILLAS R, DE AZA A H, et al. Alumina-rich refractory concretes with added spinel, periclase and dolomite: a comparative study of their microstructural evolution with temperature[J]. Journal of the European Ceramic Society, 2005, 25(9): 1499-1506. [7] DÍAZ L A, TORRECILLAS R. Hot bending strength and creep behaviour at 1 000~1 400 ℃ of high alumina refractory castables with spinel, periclase and dolomite additions[J]. Journal of the European Ceramic Society, 2009, 29(1): 53-58. [8] PEYMANFAR R, FAZLALIZADEH F. Fabrication of expanded carbon microspheres/ZnAl2O4 nanocomposite and investigation of its microwave, magnetic, and optical performance[J]. Journal of Alloys and Compounds, 2021, 854: 157273. [9] MOHANTY P, MOHAPATRO S, MAHAPATRA R, et al. Low cost synthesis route of spinel ZnAl2O4[J]. Materials Today: Proceedings, 2021, 35: 130-132. [10] MEKPRASART W, BOONYARATTANAKALIN K, PECHARAPA W, et al. Optical characteristics of samarium doped ZnAl2O4 nanomaterials synthesized by vibrational milling process[J]. Materials Today: Proceedings, 2018, 5(6): 14126-14130. [11] 谢永涣, 田 琳, 毛 硕, 等. 不同粒度锌铝尖晶石加入量对方镁石-锌铝尖晶石性能的影响[J]. 耐火材料, 2023, 57(2): 149-152. XIE Y H, TIAN L, MAO S, et al. Effect of different particle sizes zinc alumina spinel addition on properties of periclase-zinc alumina spinel[J]. Refractories, 2023, 57(2): 149-152 (in Chinese). [12] 熊 钢, 李享成. 合成致密刚玉-莫来石-锌铝尖晶石复相材料的工艺研究[J]. 咸宁学院学报, 2005, 25(3): 36-39. XIONG G, LI X C. The study of sintering technics on the synthesis of dense corundum-mullite-ZnO·Al2O3 multiphase materials[J]. Journal of Xianning Teachers College, 2005, 25(3): 36-39 (in Chinese). [13] YUAN W J, DENG C J, ZHU H X. Effects of TiO2 addition on the expansion behavior of alumina-magnesia refractory castables[J]. Materials Chemistry and Physics, 2015, 162: 724-733. [14] 任思思, 吴卓航, 吉延峻. 混凝土流动性能影响因素试验研究[J]. 材料科学, 2022(5): 429-436. REN S S, WU Z H, JI Y J. Experimental study on influencing factors of concrete fluidity[J]. Material Sciences, 2022(5): 429-436 (in Chinese). [15] 朱 超, 赵文韬, 余伟航等. 再生砖混骨料混凝土基本力学性能与本构模型[J/OL]. 复合材料学报: 1-14[2023-11-01]. https://doi.org/10.13801/j.cnki.fhclxb.20230531.004. ZHU C, ZHAO W T, YU W H, et al. Basic mechanical properties and constitutive model of recycled brick concrete aggregate[J/OL]. Acta Materiae Compositae Sinica: 1-14[2023-11-01]. https://doi.org/10.13801/j.cnki.fhclxb.20230531.004 (in Chinese). [16] 严久鑫. 混凝土强度快速发展的影响机制研究[D]. 徐州: 中国矿业大学, 2021. YAN J X. Study on influence mechanism of rapid development of concrete strength[D]. Xuzhou: China University of Mining and Technology, 2021 (in Chinese). [17] CHEN Q J, YAN W, LI N, et al. Effect of the content of light-burned alumina-spinel composite on the slag resistance of corundum-spinel refractory castables[J]. Journal of Ceramic Processing Research, 2016, 17(10): 1100-1105. |