[1] 赵万帮. 中国日用玻璃产业现状与发展前景[J]. 硅酸盐通报, 2015, 34(增刊): 21-29. ZHAO W B. Current status and development prospect of China’s daily glass industry[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(supplement): 21-29 (in Chinese). [2] 赵万帮. “十三五”日用玻璃行业节能减排形势分析(续)[J]. 玻璃与搪瓷, 2016, 44(4): 43-51+42. ZHAO W B. Analysis on energy saving and emission reduction situation of daily glass industry in the 13th five-year plan (continued)[J]. Glass Enamel & Ophthalmic Optics, 2016, 44(4): 43-51+42 (in Chinese). [3] 李晓曦. 玻璃窑炉中石油焦粉富氧燃烧特性研究[D]. 北京: 北京交通大学, 2012. LI X X. Study on oxygen-enriched combustion characteristics of petroleum coke powder in glass furnace[D]. Beijing: Beijing Jiaotong University, 2012 (in Chinese). [4] 崔兴光, 王均光, 沈建兴, 等. 玻璃窑炉节能减排技术改造及应用[J]. 玻璃搪瓷与眼镜, 2022, 50(4): 24-29+10. CUI X G, WANG J G, SHEN J X, et al. Technical transformation and application of energy saving and emission reduction in glass kiln[J]. Glass Enamel & Ophthalmic Optics, 2022, 50(4): 24-29+10 (in Chinese). [5] 王保平. 液晶玻璃基板生产负压澄清技术探讨[J]. 玻璃与搪瓷, 2019, 47(5): 25-28. WANG B P. Discussion on negative pressure clarification technology in liquid crystal glass substrate production[J]. Glass Enamel & Ophthalmic Optics, 2019, 47(5): 25-28 (in Chinese). [6] 林 健, 隋 鑫. 新一代玻璃熔制系统及其配合料制备技术简介[J]. 玻璃与搪瓷, 2011, 39(3): 32-35+40. LIN J, SUI X. Introduction on the preparation of glass batch for next generation glass melting system[J]. Glass & Enamel, 2011, 39(3): 32-35+40 (in Chinese). [7] 张 端. 玻璃生产中优化问题的研究: 窑炉保温优化设计和玻璃配合料优化计算[D]. 杭州: 浙江大学, 2002: 1-5. ZHANG D. Study on optimization problems in glass production: optimization design of furnace insulation and optimization calculation of glass batch[D]. Hangzhou: Zhejiang University, 2002: 1-5 (in Chinese). [8] 陈旭晔, 丁 明, 张洪涛, 等. 浮法玻璃熔窑烟气治理和利用[J]. 材料科学与工程学报, 2012, 30(1): 145-149. CHEN X Y, DING M, ZHANG H T, et al. Processing and utilization for flue gas of float glass furnace[J]. Journal of Materials Science and Engineering, 2012, 30(1): 145-149 (in Chinese). [9] 谭 汀. 玻璃熔窑烟气余热利用项目综合效益评价[D]. 北京: 清华大学, 2017: 2-10. TAN T. Comprehensive benefit evaluation of glass furnace flue gas waste heat utilization project[D]. Beijing: Tsinghua University, 2017: 2-10 (in Chinese). [10] 彭 寿, 马立云, 曾红杰, 等. 玻璃工业窑炉二氧化碳烟气捕集、提纯与应用[J]. 建筑玻璃与工业玻璃, 2022, 322(1): 3-7. PENG S, MA L Y, ZENG H J, et al. Carbon dioxide capture, purification, and application of glass furnace[J]. Architectural &Functional Glass, 2022, 322(1): 3-7 (in Chinese). [11] 曾雄伟, 程红莉, 张文玲, 等. 玻璃原料及配合料的控制[J]. 玻璃, 2009, 36(1): 27-33. ZENG X W, CHENG H L, ZHANG W L, et al. Control of raw materials and batch of glass[J]. Glass, 2009, 36(1): 27-33 (in Chinese). [12] 沈 洋. 《硅酸盐学报》“能源材料”专题前言[J]. 硅酸盐学报, 2021, 49(7): 1245-1246. SHEN Y. Preface of “energy materials” in Journal of the Chinese Ceramic Society[J]. Journal of the Chinese Ceramic Society, 2021, 49(7): 1245-1246 (in Chinese). [13] 何 威. 中国“洛阳浮法玻璃工艺”技术发展与创新: 超大吨位浮法玻璃熔窑技术的研发过程和发展回顾[J]. 玻璃, 2021, 48(10): 22-30. HE W. Technical development and innovation of “Luoyang float glass process” in China: review of research and development process and development of super-tonnage float glass furnace technology[J]. Glass, 2021, 48(10): 22-30 (in Chinese). [14] GONZALEZ A, SOLORZANO E, PAVISA G, et al. OPTIMELTTM regenerative thermo-chemical heat recovery for oxy-fuel glass furnaces[C]//75th Conference on Glass Problems. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015: 113-120. [15] VAN VALBURG M, SCHUURMANS F, SPERRY E, et al. Operating experience with the OPTIMELTTM heat recovery technology on a tableware glass furnace[C]//79th Conference on Glass Problems. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019: 201-211. [16] VAN VALBURG M, SPERRY E, HOLLAND L, et al. Design and implementation of OPTIMELTTM heat recovery for an oxy-fuel furnace at Libbey Leerdam[J]. Ceramic Engineering and Science Proceedings, 2018, 39(1): 89-97. [17] POPOV S K, SVISTUNOV I N, GARYAEV A B, et al. The use of thermochemical recuperation in an industrial plant[J]. Energy, 2017, 127: 44-51. [18] VAN VALBURG M, SCHUURMANS F, DE DIEGO J, et al. OPTIMELT operating data from an OPTIMELTTM thermo-chemical regenerator system on a tableware glass furnace at Libbey Leerdam[J]. Glass Machine Plants and Accessories, 2021(1): 28-32. [19] DE MIGUEL S R, VILELLA I M J, MAINA S P, et al. Influence of Pt addition to Ni catalysts on the catalytic performance for long term dry reforming of methane[J]. Applied Catalysis A: General, 2012, 435/436: 10-18. [20] HASSAN AMIN M. A mini-review on CO2 reforming of methane[J]. Progress in Petrochemical Science, 2018, 2(2): 161-165. [21] AMIN M H, SUDARSANAM P, FIELD M R, et al. Effect of a swelling agent on the performance of Ni/porous silica catalyst for CH4-CO2 reforming[J]. Langmuir, 2017, 33(40): 10632-10644. [22] SANG L X, SUN B, TAN H Y, et al. Catalytic reforming of methane with CO2 over metal foam based monolithic catalysts[J]. International Journal of Hydrogen Energy, 2012, 37(17): 13037-13043. [23] 曾红杰, 张 纲, 马立云, 等. 玻璃工业窑炉节能减排热化学再生设计[J]. 硅酸盐通报, 2022, 41(11): 3886-3892. ZENG H J, ZHANG G, MA L Y, et al. Thermochemical regeneration design of energy-saving and emission-reduction kiln in glass industry[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(11): 3886-3892 (in Chinese). [24] JANG W J, JEONG D W, SHIM J O, et al. Combined steam and carbon dioxide reforming of methane and side reactions: thermodynamic equilibrium analysis and experimental application[J]. Applied Energy, 2016, 173: 80-91. [25] SON I H, LEE S J, SOON A, et al. Steam treatment on Ni/γ-Al2O3 for enhanced carbon resistance in combined steam and carbon dioxide reforming of methane[J]. Applied Catalysis B: Environmental, 2013, 134/135: 103-109. |