BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2025, Vol. 44 ›› Issue (11): 3947-3963.DOI: 10.16552/j.cnki.issn1001-1625.2025.0626
• Review • Previous Articles Next Articles
LANG Wenli1, LIANG Meng1, XU Fenghui2, WANG Peng1, XIE Qun1
Received:2025-06-27
Revised:2025-07-29
Online:2025-11-15
Published:2025-12-04
CLC Number:
LANG Wenli, LIANG Meng, XU Fenghui, WANG Peng, XIE Qun. Axial Compression Performance of Engineered Cementitious Composite (ECC) Strengthened Concrete Columns: a State-of-the-Art Review[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(11): 3947-3963.
| [1] ALEXANDER M, BEUSHAUSEN H. Durability, service life prediction, and modelling for reinforced concrete structures-review and critique[J]. Cement and Concrete Research, 2019, 122: 17-29. [2] WU M, JOHANNESSON B, GEIKER M. A review: self-healing in cementitious materials and engineered cementitious composite as a self-healing material[J]. Construction and Building Materials, 2012, 28(1): 571-583. [3] LIU X G, MA E H, LIU J, et al. Deterioration of an industrial reinforced concrete structure exposed to high temperatures and dry-wet cycles[J]. Engineering Failure Analysis, 2022, 135: 106150. [4] AHMADI M, NADERPOUR H, KHEYRODDIN A, et al. Seismic failure probability and vulnerability assessment of steel-concrete composite structures[J]. Periodica Polytechnica Civil Engineering, 2017, 61(4): 939-950. [5] LE MINH H, KHATIR S, ABDEL WAHAB M, et al. A concrete damage plasticity model for predicting the effects of compressive high-strength concrete under static and dynamic loads[J]. Journal of Building Engineering, 2021, 44: 103239. [6] 林上顺, 林龙镁, 夏樟华, 等. 增大截面法加固RC柱受压性能研究进展[J]. 市政技术, 2022, 40(2): 40-48. LIN S S, LIN L M, XIA Z H, et al. Research on the compressive performance of RC columns reinforced by enlarged section method[J]. Municipal Engineering Technology, 2022, 40(2): 40-48 (in Chinese). [7] 李 红, 刘胜春. 增大截面法加固钢筋混凝土构件的正截面承载力研究[J]. 北京交通大学学报, 2015, 39(4): 96-100. LI H, LIU S C. Research on cross-section capacity of reinforced concrete member strengthened by increasing-section method[J]. Journal of Beijing Jiaotong University, 2015, 39(4): 96-100 (in Chinese). [8] 杨 烨, 赵来顺, 赵 曼. 改进的加大截面法用于加固轴压构件的试验研究[J]. 建筑结构, 2010, 40(增刊2): 412-414. YANG Y, ZHAO L S, ZHAO M. Experimental study on strengthening axial compression members by improved enlarged cross-section method[J]. Building Structure, 2010, 40(supplement 2): 412-414 (in Chinese). [9] 段建华. 混凝土结构加固方法综述[J]. 建筑结构, 2010, 40(增刊1): 387-389. DUAN J H. Summary of reinforcement methods for concrete structures[J]. Building Structure, 2010, 40(supplement 1): 387-389 (in Chinese). [10] FALLAH POUR A, GHOLAMPOUR A, ZHENG J N, et al. Behavior of FRP-confined high-strength concrete under eccentric compression: tests on concrete-filled FRP tube columns[J]. Composite Structures, 2019, 220: 261-272. [11] CAO Q, LI X J, LIN Z B, et al. Compression behavior of expansive concrete-encased-steel filled square CFRP tubes[J]. Composite Structures, 2019, 225: 111106. [12] KARIMI K, TAIT M J, EL-DAKHAKHNI W W. Testing and modeling of a novel FRP-encased steel-concrete composite column[J]. Composite Structures, 2011, 93(5): 1463-1473. [13] YANG Y K, WU C Q, LIU Z X, et al. Comparative study on square and rectangular UHPFRC-filled steel tubular (CFST) columns under axial compression[J]. Structures, 2021, 34: 2054-2068. [14] LI F H, FENG Z H, DENG K L, et al. Axial behavior of reinforced PP-ECC column and hybrid NSC-ECC column under compression[J]. Engineering Structures, 2019, 195: 223-230. [15] 康迎杰, 郭自利, 叶斌斌, 等. ECC全包裹普通混凝土复合试件的力学性能[J]. 材料导报, 2024, 38(3): 108-113. KANG Y J, GUO Z L, YE B B, et al. Mechanical properties of ordinary concrete confined with engineered cementitious composites (ECC)[J]. Materials Reports, 2024, 38(3): 108-113 (in Chinese). [16] LI V C. ECC-tailored composites through micromechanical modeling[C]//Fiber Reinforced Concrete: Present and the Future. Montreal: Canadian Society for Civil Engineering, 1998: 64-97. [17] 徐 冉, 董泽坤, 王 耀, 等. 高延性纤维增强水泥基复合材料(ECC)加固砌体平面外力学性能研究[J/OL]. 工程力学, 2025: 1-13 (2025-04-21) [2025-06-10]. https://link.cnki.net/urlid/11.2595.O3.20250421.1422.012. XU R, DONG Z K, WANG Y, et al. Study on out-of-plane mechanical properties of masonry strengthened with high ductile fiber reinforced cement-based composite (ECC)[J/OL]. Engineering Mechanics, 2025: 1-13 (2025-04-21) [2025-06-10]. https://link.cnki.net/urlid/11.2595.O3.20250421.1422.012 (in Chinese). [18] 王玉璞, 李家正, 石 妍. 超高延性水泥基复合材料耐久性研究进展[J]. 人民长江, 2024, 55(1): 175-183. WANG Y P, LI J Z, SHI Y. Research progress on durability of ultra-high engineered cementitious composites[J]. Yangtze River, 2024, 55(1): 175-183 (in Chinese). [19] AL-GEMEEL A N, ZHUGE Y. Experimental investigation of textile reinforced engineered cementitious composite (ECC) for square concrete column confinement[J]. Construction and Building Materials, 2018, 174: 594-602. [20] AL-GEMEEL A N, ZHUGE Y. Using textile reinforced engineered cementitious composite for concrete columns confinement[J]. Composite Structures, 2019, 210: 695-706. [21] 江佳斐, 隋 凯. 纤维网格增强超高韧性水泥复合材料加固混凝土圆柱受压性能试验[J]. 复合材料学报, 2019, 36(8): 1957-1967. JIANG J F, SUI K. Experimental study of compression performance of concrete cylinder strengthened by textile reinforced engineering cement composites[J]. Acta Materiae Compositae Sinica, 2019, 36(8): 1957-1967 (in Chinese). [22] CHEN X, XIONG Z M, ZHUGE Y, et al. Numerical analysis of compressive behavior of pre-damaged concrete columns strengthened with textile-reinforced ECC[J]. Case Studies in Construction Materials, 2023, 18: e02198. [23] LAI B L, ZHANG M Y, CHEN Z P, et al. Axial compressive behavior and design of semi-precast steel reinforced concrete composite columns with permanent ECC formwork[J]. Structures, 2023, 57: 105130. [24] ZHANG P, FAN S H, LIU Y, et al. Axial compressive performance of masonry columns strengthened with ECC jacket and FRP strips[J]. Engineering Structures, 2024, 304: 117661. [25] CHEN X, ZHUGE Y, NASSIR AL-GEMEEL A, et al. Compressive behaviour of concrete column confined with basalt textile reinforced ECC[J]. Engineering Structures, 2021, 243: 112651. [26] LI N, LI W P, LU Y Y, et al. Corroded reinforced concrete columns strengthened with basalt fibre reinforced ECC under axial compression[J]. Composite Structures, 2023, 303: 116328. [27] LI S W, WANG Y N, DUN W P, et al. Phosphoproteomic analysis of FAC overload-triggered human hepatic cells reveals G2/M phase arrest[J]. Biochemical and Biophysical Research Communications, 2022, 619: 62-67. [28] LI S, CHAN T M, YOUNG B. Experimental investigation on axial compressive behavior of novel FRP-ECC-HSC composite short column[J]. Composite Structures, 2023, 303: 116285. [29] RANADE R, HEARD W F, WILLIAMS B A. Multi-scale mechanical performance of high strength-high ductility concrete[C]//Dynamic Behavior of Materials, Volume 1. Cham: Springer International Publishing, 2016: 93-101. [30] LI Y J, CHEN C, LI Z N, et al. High-throughput atomistic modeling of nanocrystalline structure and mechanics of calcium aluminate silicate hydrate[J]. Nature Communications, 2025, 16(1): 5352. [31] LEI D Y, GUO L P, CHEN B, et al. The connection between microscopic and macroscopic properties of ultra-high strength and ultra-high ductility cementitious composites (UHS-UHDCC)[J]. Composites Part B: Engineering, 2019, 164: 144-157. [32] YU K Q, YU J T, DAI J G, et al. Development of ultra-high performance engineered cementitious composites using polyethylene (PE) fibers[J]. Construction and Building Materials, 2018, 158: 217-227. [33] LI V C, WANG S, WU C. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)[J]. ACI Materials Journal, 2001, 98(6): 483-492. [34] WANG G, ZHUANG Y H, SONG L B, et al. Mechanical properties and failure mechanism of fiber-reinforced concrete materials: effects of fiber type and content[J]. Construction and Building Materials, 2025, 465: 140190. [35] MATSUMOTO T, SUTHIWARAPIRAK P, KANDA T. Mechanisms of multiple cracking and fracture of DFRCC under fatigue flexure[J]. Journal of Advanced Concrete Technology, 2003, 1(3): 299-306. [36] 徐世烺, 李贺东. 超高韧性水泥基复合材料直接拉伸试验研究[J]. 土木工程学报, 2009, 42(9): 32-41. XU S L, LI H D. Uniaxial tensile experiments of ultra-high toughness cementitious composite[J]. China Civil Engineering Journal, 2009, 42(9): 32-41 (in Chinese). [37] FELEKOGLU B, TOSUN-FELEKOGLU K, RANADE R, et al. Influence of matrix flowability, fiber mixing procedure, and curing conditions on the mechanical performance of HTPP-ECC[J]. Composites Part B: Engineering, 2014, 60: 359-370. [38] MAALEJ M, QUEK S T, ZHANG J. Behavior of hybrid-fiber engineered cementitious composites subjected to dynamic tensile loading and projectile impact[J]. Journal of Materials in Civil Engineering, 2005, 17(2): 143-152. [39] ZHU J X, XU L Y, HUANG B T, et al. Recent developments in engineered/strain-hardening cementitious composites (ECC/SHCC) with high and ultra-high strength[J]. Construction and Building Materials, 2022, 342: 127956. [40] 赵永生, 王嘉伟, 俞家欢, 等. FRP筋增强PP ECC轴压柱试验研究[J]. 混凝土与水泥制品, 2013(5): 41-45. ZHAO Y S, WANG J W, YU J H, et al. Experimental research on axial compression of FRP bar reinforced PP ECC columns[J]. China Concrete and Cement Products, 2013(5): 41-45 (in Chinese). [41] 杜红秀, 吴振戌, 杜 帆. PP纤维和钢筋对高温下C60HPC板热应变的影响[J]. 建筑材料学报, 2022, 25(2): 142-149. DU H X, WU Z X, DU F. Effect of polypropylene fiber and steel bar on thermal strain of C60 high performance concrete slab at high temperature[J]. Journal of Building Materials, 2022, 25(2): 142-149 (in Chinese). [42] WANG Y C, LIU F C, YU J T, et al. Effect of polyethylene fiber content on physical and mechanical properties of engineered cementitious composites[J]. Construction and Building Materials, 2020, 251: 118917. [43] LI V C, LEUNG C K Y. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, 1992, 118(11): 2246-2264. [44] ZHOU J, QIAN S Z, YE G, et al. Improved fiber distribution and mechanical properties of engineered cementitious composites by adjusting the mixing sequence[J]. Cement and Concrete Composites, 2012, 34(3): 342-348. [45] WANG S X. Micromechanics based matrix design for engineered cementitious composites[D]. Ann Arbor, MI, USA: University of Michigan, 2005. [46] YANG E H. Designing added functions in engineered cementitious composites[D]. Ann Arbor, MI, USA: University of Michigan, 2008. [47] ZHANG J, LI V C. Monotonic and fatigue performance in bending of fiber-reinforced engineered cementitious composite in overlay system[J]. Cement and Concrete Research, 2002, 32(3): 415-423. [48] WANG Y Z, QIAO P Z, SUN J, et al. Influence of surface treatments and test methods on tensile strength of UHPC-NC interface bond[J]. Construction and Building Materials, 2024, 456: 139051. [49] GUAN D Z, PENG Z H, CHEN Z X, et al. Experimental investigation of interfacial shear behavior between engineered cementitious composite and normal concrete[J]. Case Studies in Construction Materials, 2023, 19: e02666. [50] WU F W, MA Y T, LEI S, et al. Experimental study on the bond behavior of CFRP-grid-reinforced ECC and NC interface[J]. Construction and Building Materials, 2023, 392: 131947. [51] LIU T X, CHARRON J P. Determination of NSC-UHPC interface properties for numerical modeling of UHPC-strengthened concrete beams and slabs[J]. Engineering Structures, 2023, 290: 116385. [52] HU Z H, ELCHALAKANI M, YEHIA S, et al. Engineered cementitious composite (ECC) strengthening of reinforced concrete structures: a state-of-the-art review[J]. Journal of Building Engineering, 2024, 86: 108941. [53] CAO J C, WU F W, ZHAO B T, et al. Bond performance of ECC-NC interface under salt freeze-thaw cycles: damage mechanism and degradation model[J]. Structures, 2025, 72: 108312. [54] CAO J C, WU F W, LEI S, et al. Experimental study on the bonding performance of engineered cementitious composites to normal concrete interface subjected to salt freeze-thaw cycles[J]. Composite Structures, 2024, 330: 117828. [55] OUYANG J X, GUO R X, WANG X Y, et al. Effects of interface agent and cooling methods on the interfacial bonding performance of engineered cementitious composites (ECC) and existing concrete exposed to high temperature[J]. Construction and Building Materials, 2023, 376: 131054. [56] ZHANG K, YUAN Q, ZHU J T. Analytical model for the bonding performance between HSSWM-ECC and concrete[J]. Cement and Concrete Composites, 2022, 132: 104632. [57] WANG B, LI Q H, LIU F, et al. Shear bond assessment of UHTCC repair using push-out test[J]. Construction and Building Materials, 2018, 164: 206-216. [58] WANG B, LI Q H, LIU F, et al. Comparison of cast-in-situ and prefabricated UHTCC repair systems under bending[J]. Journal of Materials in Civil Engineering, 2018, 30: 04017249. [59] WU F W, MA Y T, CAO J C, et al. Experimental study and analytical model for the bond-critical failure of the CFRP-ECC-NC composite interfaces[J]. Engineering Structures, 2025, 335: 120303. [60] LI W, WANG Z X, WU W J, et al. Axial compressive performance of hybrid fiber cementitious composite-encased CFST columns[J]. Materials Today Communications, 2023, 35: 106044. [61] LI X, ZHOU Z J, WANG C Q, et al. Experimental study on the performance of ECC-ordinary concrete-steel bar cooperative bonding interface in link slab structure[J]. Case Studies in Construction Materials, 2024, 21: e03970. [62] TENG X D, LU C Y, LI C, et al. Investigation on shear mechanical behavior of the interface between sulphoaluminate cement (SAC)-ECC and existing concrete[J]. Construction and Building Materials, 2023, 403: 133184. [63] WU F W, ZHANG Y H, CAO J C, et al. Bonding performance between ECC repair layer and salt freeze-thaw damaged NC: experimental study and theoretical analysis[J]. Construction and Building Materials, 2025, 475: 141268. [64] RASHID K, AHMAD M, UEDA T, et al. Experimental investigation of the bond strength between new to old concrete using different adhesive layers[J]. Construction and Building Materials, 2020, 249: 118798. [65] ZHAO K, HU Z J, WANG B X, et al. Axial compressive behavior of pre-damaged concrete-filled square steel tube columns repaired with section circularization and CFRP composites[J]. Thin-Walled Structures, 2024, 197: 111606. [66] LU L H, ZHANG T H, LIANG T, et al. Axial compressive behavior of circular concrete-filled steel tube stub columns with steel slag coarse aggregate[J]. Structures, 2023, 51: 1893-1905. [67] 李易越. 聚乙烯醇纤维水泥砂浆钢筋网加固RC方柱轴压性能试验[D]. 长沙: 湖南大学, 2011. LI Y Y. The research on bearing capacity of PVA-ECC reinforced concrete square column subjected to axial load[D]. Changsha: Hunan University, 2011 (in Chinese). [68] 王 瑾, 许维炳, 杜修力, 等. 预制钢筋增强ECC壳-混凝土组合柱轴压力学性能[J]. 复合材料学报, 2024, 41(9): 5083-5097. WANG J, XU W B, DU X L, et al. Axial compressive behaviour of precast steel reinforced ECC shell-concrete composite column[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 5083-5097 (in Chinese). [69] SIRIJAROONCHAI K, EL-TAWIL S, PARRA-MONTESINOS G. Behavior of high performance fiber reinforced cement composites under multi-axial compressive loading[J]. Cement and Concrete Composites, 2010, 32(1): 62-72. [70] 陈 港, 包 超, 车佳玲, 等. 钢管-纤维增强水泥基复合材料混凝土叠合柱轴压性能[J]. 科学技术与工程, 2021, 21(7): 2823-2829. CHEN G, BAO C, CHE J L, et al. Axial compression performance of steel tube-engineered cementitious composites concrete composite column[J]. Science Technology and Engineering, 2021, 21(7): 2823-2829 (in Chinese). [71] 张孝臣, 王 瑞, 鲁 亚, 等. 预制拼装UHPC组合混凝土柱轴压性能试验研究[J]. 应用基础与工程科学学报, 2024, 32(2): 502-513. ZHANG X C, WANG R, LU Y, et al. Axial compressive behaviors of a prefabricated assembled UHPC composite concrete column[J]. Journal of Basic Science and Engineering, 2024, 32(2): 502-513 (in Chinese). [72] 黄海林, 高亚强, 徐勇逵, 等. 耐碱玻纤网格与聚丙烯混凝土复合加固方柱的轴压试验研究及承载力计算[J]. 建筑科学与工程学报, 2023, 40(3): 70-82. HUANG H L, GAO Y Q, XU Y K, et al. Axial compression test and bearing capacity calculation of square columns composite strengthened with alkali-resistant fiberglass grid and polypropylene concrete[J]. Journal of Architecture and Civil Engineering, 2023, 40(3): 70-82 (in Chinese). [73] 苏会晓. FRP网格增强ECC加固混凝土柱受压性能数值分析[D]. 郑州: 郑州大学, 2017. SU H X. Numerical analysis of compressive performance of concrete columns strengthened with FRP-grid reinforced ECC[D]. Zhengzhou: Zhengzhou University, 2017 (in Chinese). [74] LI C H, LIU X C, ZHANG A L, et al. Axial compressive behaviour of concrete encased extended I-shaped steel composite stub columns with less reinforcement[J]. Engineering Structures, 2023, 287: 116167. [75] 王利超. 高强钢绞线网/ECC加固RC柱轴压性能数值分析与承载力研究[D]. 郑州: 郑州大学, 2022. WANG L C. Numerical analysis and bearing capacity study of RC columns strengthened with high-strength steel stranded wire meshs/ECC under axial compression load[D]. Zhengzhou: Zhengzhou University, 2022 (in Chinese). [76] 王新玲, 苏会晓, 李 可, 等. FRP网格增强ECC加固素混凝土柱受压性能数值分析[J]. 建筑科学, 2018, 34(3): 22-29. WANG X L, SU H X, LI K, et al. Numerical analysis of compressive performance of plain concrete columns strengthened with FRP-grid and ECC[J]. Building Science, 2018, 34(3): 22-29 (in Chinese). [77] 朱忠锋. FRP网格/ECC约束混凝土短柱轴向受力性能试验研究[D]. 南京: 东南大学, 2020. ZHU Z F. Experimental research on axial mechanical behavior of short concrete column strengthened with FRP grid and ECC[D]. Nanjing: Southeast University, 2020 (in Chinese). [78] 郭道琳. BFRP网格增强ECC复合约束RC柱力学性能研究[D]. 大庆: 东北石油大学, 2021. GUO D L. Study on mechanical performance of composite constrained RC column with BFRP grid enhanced ECC[D]. Daqing: Northeast Petroleum University, 2021 (in Chinese). [79] 成 彤, 李宁景, 陈光明, 等. 带纤维编织网增强ECC层钢管混凝土轴压力学性能试验研究[J]. 西安建筑科技大学学报(自然科学版), 2022, 54(2): 202-210+317. CHENG T, LI N J, CHEN G M, et al. Experimental study on axial compressive mechanical properties of concrete-filled steel tube with ECC layer reinforced by textile[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2022, 54(2): 202-210+317 (in Chinese). [80] 卢春玲, 欧阳康, 王 强. UHPC加固混凝土圆柱轴压性能试验研究[J]. 建筑科学, 2023, 39(3): 108-117. LU C L, OUYANG K, WANG Q. Experimental study on the axial compression behavior of RC cylinders strengthened with UHPC[J]. Building Science, 2023, 39(3): 108-117 (in Chinese). [81] TANG J P, FENG R, QUACH W M, et al. Axial compressive behaviour of simulated corrosion-damaged RC columns retrofitted with UHPFRC jackets subjected to dry-wet cycling condition[J]. Construction and Building Materials, 2024, 424: 135956. [82] LAI B L, ZHANG M Y, ZHENG X F, et al. Experimental study on the axial compressive behaviour of steel reinforced concrete composite columns with stay-in-place ECC jacket[J]. Journal of Building Engineering, 2023, 68: 106174. [83] YANG X, ZHANG B, ZHOU A, et al. Axial compressive behaviour of corroded steel reinforced concrete columns retrofitted with a basalt fibre reinforced polymer-ultrahigh performance concrete jacket[J]. Composite Structures, 2023, 304: 116447. [84] 赖世锦. FRP网格/ECC复合加固钢筋混凝土方柱轴压性能试验及理论研究[D]. 柳州: 广西科技大学, 2021. LAI S J. Experimental and theoretical study on the axial compression performance of reinforced concrete columns reinforced by FRP grid/ECC composite FRP[D]. Liuzhou: Guangxi University of Science and Technology, 2021 (in Chinese). [85] LI S, CHEN X Y, LIU Z Z, et al. Axial behavior of pre-damaged RC columns strengthened with CFRP textile grid-reinforced ECC matrix composites[J]. Journal of Building Engineering, 2023, 73: 106813. [86] 沈 乐, 冯 宸, 杨 波, 等. 多腔体中空夹层钢管超高性能混凝土短柱轴心受压性能试验研究[J]. 建筑结构学报, 2021, 42(增刊2): 204-211. SHEN L, FENG C, YANG B, et al. Experimental study on axial compression behavior of ultra-high performance concrete filled steel tubular short columns with multi-cavity hollow sandwich[J]. Journal of Building Structures, 2021, 42(supplement 2): 204-211 (in Chinese). [87] ZENG W Y, AYOUGH P, ZHOU X H, et al. Performance of circular CFST columns strengthened with CFRP grid-reinforced ECC under axial compression: numerical modelling and design[J]. Engineering Structures, 2025, 325: 119375. [88] YAN Y H, LIANG H J, LU Y Y, et al. Behaviour of concrete-filled steel-tube columns strengthened with high-strength CFRP textile grid-reinforced high-ductility engineered cementitious composites[J]. Construction and Building Materials, 2021, 269: 121283. [89] KHAN M K I, RANA M M, ZHANG Y X, et al. Compressive behaviour of engineered cementitious composites and concrete encased steel composite columns[J]. Journal of Constructional Steel Research, 2020, 167: 105967. [90] KHAN M K I, RANA M M, ZHANG Y X, et al. Behaviour of engineered cementitious composite-encased stub concrete columns under axial compression[J]. Magazine of Concrete Research, 2020, 72(19): 984-1005. [91] SHETA A, XING M, ZHUGE Y, et al. Axial compressive behaviour of thin-walled composite columns comprise high-strength cold-formed steel and PE-ECC[J]. Thin-Walled Structures, 2023, 184: 110471. [92] FAROUK A I B, RONG W, ZHU J S. Compressive behavior of ultra-high-performance-normal strength concrete (UHPC-NSC) column with the longitudinal grooved contact surface[J]. Journal of Building Engineering, 2023, 68: 106074. [93] SOUDKI K, ALKHRDAJI T. Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures (ACI 440.2R-02)[C]//Structures Congress 2005. New York, USA. American Society of Civil Engineers, 2005: 1-8. [94] 李 娜, 夏永阳, 李旺鹏, 等. FRPG-ECC复合加固钢筋混凝土柱轴压性能研究[J]. 华中科技大学学报(自然科学版), 2024, 52(10): 7-12. LI N, XIA Y Y, LI W P, et al. Study on axial compression behavior of reinforced concrete columns strengthened by FRPG-ECC[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2024, 52(10): 7-12 (in Chinese). [95] ZHANG Z Y, WU X H, SUN Q, et al. Compressive behavior of corroded reinforced concrete columns strengthened with BFRP reinforced ECC in marine environment[J]. Ocean Engineering, 2023, 279: 114533. [96] 中华人民共和国住房和城乡建设部. 混凝土结构设计标准: GB/T 50010—2010[S]. 北京: 中国建筑工业出版社, 2010. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of concrete structures: GB/T 50010—2010[S]. Beijing: China Architecture & Building Press, 2010 (in Chinese). |
| [1] | CHEN Tao, LI Siyu, ZENG Qibin, LIU Yifan, LIU Minghua. Research and Application of Lignin Depolymerisation Products Modified Melamine-Based Ceramic Additives [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(7): 2608-2616. |
| [2] | HAO Rusheng, HU Wei, HE Jingjing, WU Wenbo, LU Haodan, ZHANG Wei. Effects of Fiber Types on Mechanical Properties and Microstructure of Engineered Cementitious Composites [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(7): 2396-2405. |
| [3] | ZHANG Zengqi, LI Siyi, LIU Xiaoming, MA Shanliang, SHAO Yang, CHEN Jie, DU Weijie. Research Progress in Synergistic Preparation of Magnesium Phosphate Cement by Multi-Source Solid Wastes [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1191-1207. |
| [4] | LI Hui, LI Dong, LIU Shi. Strengthening of Spontaneous Combustion Coal Gangue Aggregate and Its Effect on Mechanical Properties of Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(3): 981-991. |
| [5] | CHU Lijing, ZHUO Kexian, YANG Zeming, LI Chaosen, LIU Run’an, LIN Jiaxiang. Experimental Study on Interfacial Bonding Performance Between Engineered Geopolymer Composites with Hybrid PE/PVA Fiber and Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(2): 463-473. |
| [6] | CHU Liusheng, DU Feixiang, TIAN Ye, YUAN Chengfang, CHENG Zhanqi. Mechanical Properties and Microstructure of Recycled Brick Powder ECC after Physical Excitation [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(1): 253-263. |
| [7] | MAO Jingyi, LIU Bing, GUO Zhenqiang, ZHANG Jiachang, YUAN Jian. Chemical Strengthening and Mechanical Properties of Flexible Glass [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(4): 1359-1365. |
| [8] | ZHU Helong, XU Ruitian, LIANG Yuhan, LIANG Ying, YANG Qian, CHEN Zongping. Axial Compressive Performance Experimental Study and Finite Element Analysis on Coral Aggregate Seawater Sea-Sand Concrete Columns Confined with CFRP-PVC Tube [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(3): 891-904. |
| [9] | CHENG Xinlei, MU Rui, LIU Xiaoying. Review on Preparation and Mechanical Properties of Ultra-High Performance Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(12): 4295-4312. |
| [10] | JIA Yi, LIU Pengzeng, LIU Qiqian, WANG Zihao, SONG Haobo. Flexural Performance of PP-ECC Bridge Pier under Simulated Earthquake [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(10): 3623-3633. |
| [11] | SHEN Zhenqiang, WANG Yudan, CAO Xianqi, SONG Laiming, XUE Jinlong, WANG Chao. Effect of Polyethylene Glycol on Pot Life and Performances of Silicate Adhesives [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(1): 317-328. |
| [12] | PENG Man, GAO Yongtao, HAN Yang, CHEN Xiuli, KOU Xiongjun. Experimental Study on Mechanical Properties of Scrap Steel Fiber Reinforced Rubber Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3286-3294. |
| [13] | YUAN Zhiyong, ZHANG Xueri, LI Kai, XU Chengming, WU Jiali, LIAO Cangdong, ZHENG Meng, WU Yinghao, YAN Faqiang. Evolution of Composition, Structure and Mechanical Properties of High Alumina Porcelain with Sintering Temperature [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3315-3323. |
| [14] | GUAN Jiwen, CHEN Hua, CHANG Ping, LIANG Qingwen, DAN Yu, YANG Hanning, CHEN Hongmei. Analysis on Bearing Capacity and Bending Ductility of GFRP-Coral Concrete Columns under Eccentric Compression [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(7): 2409-2418. |
| [15] | GAO Yingli, FENG Xinling, LONG Guoxin, BU Tao, LI Zhengkang. Ratio Optimization and Fatigue Performance Research of Mixed Fiber-Tailing Sand ECC [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(5): 1785-1793. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||