[1] 骆展鹏, 熊春林, 韩泽军, 等. 矿渣-粉煤灰-玻璃粉复合固化盾构土力学性能及固化机制[J]. 硅酸盐通报, 2025, 44(5): 1803-1812. LUO Z P, XIONG C L, HAN Z J, et al. Mechanical properties and solidification mechanism of slag-fly ash-glass powder composite solidified shield soil[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(5): 1803-1812 (in Chinese). [2] 张争奇, 刘祉鑫, 芮照诚, 等. 地聚物稳定建筑固废再生集料性能研究[J]. 硅酸盐通报, 2025, 44(9): 3347-3354. ZHANG Z Q, LIU Z X, RUI Z C, et al. Properties of geopolymer stabilized construction solid waste recycled aggregates[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(9): 3347-3354 (in Chinese). [3] 冯兴国, 刘 宁, 卢向雨. 复合地聚物固化高含水率泥浆的回填性能及微观机理研究[J]. 硅酸盐通报, 2023, 42(10): 3643-3651. FENG X G, LIU N, LU X Y. Backfilling performance and microscopic mechanism of high moisture content slurry solidified by composite geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(10): 3643-3651 (in Chinese). [4] 代金芯, 石宵爽, 王清远, 等. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082. DAI J X, SHI X S, WANG Q Y, et al. Effect of multi-factor on the compressive strength of construction and demolition waste based geopolymer concrete[J]. Materials Reports, 2021, 35(9): 9077-9082 (in Chinese). [5] 龙 涛, 石宵爽, 王清远, 等. 粉煤灰基地聚物再生混凝土的力学性能和微观结构[J]. 四川大学学报(工程科学版), 2013, 45(增刊1): 43-47. LONG T, SHI X S, WANG Q Y, et al. Mechanical properties and microstructure of fly ash based geopolymeric polymer recycled concrete[J]. Advanced Engineering Sciences, 2013, 45(supplement 1): 43-47 (in Chinese). [5] 龙 涛, 石宵爽, 王清远, 等. 粉煤灰基地聚物再生混凝土的力学性能和微观结构[J]. 四川大学学报(工程科学版), 2013, 45(增刊1): 43-47. LONG T, SHI X S, WANG Q Y, et al. Mechanical properties and microstructure of fly ash based geopolymeric polymer recycled concrete[J]. Journal of Sichuan University (Engineering Science Edition), 2013, 45(supplement 1): 43-47 (in Chinese). [6] 段立伟, 罗安邦, 陈英豪, 等. 偏高岭土-磷酸基地聚物的力学性能及微观结构分析[J]. 硅酸盐通报, 2024, 43(10): 3694-3703. DUAN L W, LUO A B, CHEN Y H, et al. Mechanical properties and microstructure analysis of metakaolin-phosphoric acid based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(10): 3694-3703 (in Chinese). [7] 丁兆洋, 苏 群, 李明泽, 等. 水玻璃模数对地聚物再生混凝土力学性能的影响[J]. 建筑材料学报, 2023, 26(1): 61-70. DING Z Y, SU Q, LI M Z, et al. Effect of modulus of water glass on mechanical properties of geopolymer recycled aggregate concrete[J]. Journal of Building Materials, 2023, 26(1): 61-70 (in Chinese). [8] 张海霞, 董 昊. 地聚物混凝土干燥收缩性能及活性氧化镁补偿收缩研究[J]. 硅酸盐通报, 2024, 43(1): 219-226. ZHANG H X, DONG H. Drying shrinkage performance of geopolymer concrete and shrinkage compensation of active MgO[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(1): 219-226 (in Chinese). [9] SARAVANAKUMAR P. Strength and durability studies on geopolymer recycled aggregate concrete[J]. International Journal of Engineering & Technology, 2018, 7(2): 370. [10] REN X, ZHANG L Y. Experimental study of geopolymer concrete produced from waste concrete[J]. Journal of Materials in Civil Engineering, 2019, 31(7): 04019114. [11] TAHWIA A M, HENIEGAL A M, ABDELLATIEF M, et al. Properties of ultra-high performance geopolymer concrete incorporating recycled waste glass[J]. Case Studies in Construction Materials, 2022, 17: e01393. [12] WAQAS R M, BUTT F, DANISH A, et al. Influence of bentonite on mechanical and durability properties of high-calcium fly ash geopolymer concrete with natural and recycled aggregates[J]. Materials, 2021, 14(24): 7790. [13] XU Z, HUANG Z P, LIU C J, et al. Experimental study on mechanical properties and microstructures of steel fiber-reinforced fly ash-metakaolin geopolymer-recycled concrete[J]. Reviews on Advanced Materials Science, 2021, 60(1): 578-590. [14] ŞAHIN F, UYSAL M, CANPOLAT O, et al. Effect of basalt fiber on metakaolin-based geopolymer mortars containing rilem, basalt and recycled waste concrete aggregates[J]. Construction and Building Materials, 2021, 301: 124113. [15] 王爱国, 郑 毅, 张祖华, 等. 地聚物胶凝材料改性提高混凝土耐久性的研究进展[J]. 材料导报, 2019, 33(15): 2552-2560. WANG A G, ZHENG Y, ZHANG Z H, et al. Research progress of geopolymer cementitious material modification for improving durability of concrete[J]. Materials Reports, 2019, 33(15): 2552-2560 (in Chinese). [16] 郑居焕, 刘如月, 颜桂云, 等. 砖骨料地聚物再生混凝土力学性能试验研究[J]. 工业建筑, 2022, 52(9): 234-240. ZHENG J H, LIU R Y, YAN G Y, et al. Experimental research on basic mechanical properties of brick aggregate geopolymer recycled concrete[J]. Industrial Construction, 2022, 52(9): 234-240 (in Chinese). [17] ZHENG Y Q, XIAO Y J. A comparative study on strength, bond-slip performance and microstructure of geopolymer/ordinary recycled brick aggregate concrete[J]. Construction and Building Materials, 2023, 366: 130257. [18] 张震洋, 张 璐, 伊海赫, 等. 基于响应面法的地聚物混凝土力学性能试验研究[J]. 硅酸盐通报, 2024, 43(9): 3192-3202. ZHANG Z Y, ZHANG L, YI H H, et al. Mechanical properties of geopolymer concrete based on response surface method[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(9): 3192-3202 (in Chinese). [19] 王怀亮, 欧 睿. 高温前后再生砖骨料地聚物混凝土受压本构模型[J]. 复合材料学报, 2024, 41(6): 3143-3153. WANG H L, OU R. Constitutive model of recycled brick aggregate geopolymer concrete under compression before and after elevated temperature[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 3143-3153 (in Chinese). [20] ALQARNI A S, ABBAS H, AL-SHWIKH K M, et al. Treatment of recycled concrete aggregate to enhance concrete performance[J]. Construction and Building Materials, 2021, 307: 124960. [21] SOUTSOS M, BOYLE A P, VINAI R, et al. Factors influencing the compressive strength of fly ash based geopolymers[J]. Construction and Building Materials, 2016, 110: 355-368. [22] TANG Z, LI W G, TAM V W Y, et al. Investigation on dynamic mechanical properties of fly ash/slag-based geopolymeric recycled aggregate concrete[J]. Composites Part B: Engineering, 2020, 185: 107776. |