[1] 白卫峰, 李思蕾, 管俊峰, 等. 再生混凝土的单轴压缩动态力学性能[J]. 建筑材料学报, 2022, 25(5): 498-508. BAI W F, LI S L, GUAN J F, et al. Dynamic mechanical properties of recycled concrete under uniaxial compression[J]. Journal of Building Materials, 2022, 25(5): 498-508 (in Chinese). [2] FEMANDS B, CARRE H, GABORIEAU C, at al. Thermomechanical properties and microstructure of concrete made with recycled concrete aggregates after exposure to high temperatures[J]. Fire and Materials, 2024, 49(1): 59-75. [3] MEFTAH H, ARABI N. Effects of elevated temperatures' exposure on the properties of concrete incorporating recycled concrete aggregates[J]. Construction and Building Materials, 2024, 411: 134612. [4] TRIVEDI S S, SARANGI D, DAS B B, et al. Influence of multi-stage processing and mechano-chemical treatments on the hydration and microstructure properties of recycled aggregate concrete[J]. Construction and Building Materials, 2023, 409: 133993. [5] LUO L, JIA M M, WANG H W, et al. Experimental evaluation and microscopic analysis of the sustainable ultra-high-performance concrete after exposure to high temperatures[J]. Structural Concrete, 2025, 26(3): 2787-2815. [6] CHEN Z P, CHEN J J, NING F, et al. Residual properties of recycled concrete after exposure to high temperatures[J]. Magazine of Concrete Research, 2019, 71(15): 781-793. [7] ZHANG M M, ZHU L H, GAO S, et al. Mechanical properties, microstructure, and environmental assessment of recycled concrete from aggregate after fire[J]. Construction and Building Materials, 2024, 425: 136074. [8] CHEN W, YANG H F. Fracture performance of concrete incorporating different levels of recycled coarse aggregate[J]. Structural Concrete, 2021, 22(supplement 1): 48-57. [9] XIAO J Z, TANG Y X, CEHN H N, et al. Effects of recycled aggregate combinations and recycled powder contents on fracture behavior of fully recycled aggregate concrete[J]. Journal of Cleaner Production, 2022, 36(15): 132895. [10] ADESSINA A, BEN FRAJ A, BARTHÉLÉMY J F, et al. Experimental and micromechanical investigation on the mechanical and durability properties of recycled aggregates concrete[J]. Cement and Concrete Research, 2019, 126: 105900. [11] FANG G H, CHEN J T, DONG B Q, et al. Microstructure and micromechanical properties of interfacial transition zone in green recycled aggregate concrete[J]. Journal of Building Engineering, 2023, 66: 105860. [12] CHEN W, PENG L X, YANG H F, et al. Residual fracture energy of natural and recycled aggregate concrete after exposure to high temperatures[J]. Structural Concrete, 2023, 24(2): 1879-1892. [13] CHEN W, PENG L X, YANG H F. Fracture behaviors of concrete incorporating different levels of recycled coarse aggregate after exposure to elevated temperatures[J]. Journal of Building Engineering, 2021, 35: 02040. [14] VIEIRA J P B, CORREIA J R, DE BRITO J. Post-fire residual mechanical properties of concrete made with recycled concrete coarse aggregates[J]. Cement and Concrete Research, 2011, 41(5): 533-541. [15] 陆洲导, 俞可权, 苏 磊, 等. 高温后混凝土断裂性能研究[J]. 建筑材料学报, 2012, 15(6): 836-840+846. LU Z D, YU K Q, SU L, et al. Residual fracture behaviors of concrete subjected to elevated temperatures[J]. Journal of Building Materials, 2012, 15(6): 836-840+846 (in Chinese). [16] WANG J, GUO Z X, ZHANG P, et al. Fracture properties of rubberized concrete under different temperature and humidity conditions based on digital image correlation technique[J]. Journal of Cleaner Production, 2020, 276: 124106. [17] 杭振园, 喻 莹. 混凝土-环氧砂浆界面Ⅰ-Ⅱ型断裂性能试验研究[J]. 工业建筑, 2023, 53(2): 29-36. HANG Z Y, YU Y. Experimental study on the fracture properties of type Ⅰ-Ⅱ at the interface between concrete and epoxy mortar[J]. Industrial Buildings, 2023, 53(2): 29-36 (in Chinese). [18] 王海超, 高义龙, 安雪晖, 等. 自密实堆石混凝土Ⅰ-Ⅱ复合型断裂性能[J]. 混凝土, 2013(7): 7-10. WANG H C, GAO Y L, AN X H, et al. Experimental study on Ⅰ-Ⅱ mixed mode fracture performance and influence of crack-depth of self-compacting rock-filled concrete[J]. Concrete, 2013(7): 7-10 (in Chinese). [19] MAHMOUD A, ABDEL K A. Comprehensive investigation of rock fracture behaviour in clay-rich rocks under the effect of temperature: experimental study under three loading modes (Ⅰ, Ⅰ/Ⅱ, Ⅱ)[J]. Engineering Fracture Mechanics, 2022, 276. [20] YU J J, LI G D, REN Z Y, et al. Mixed-mode Ⅰ-Ⅱ mesoscale fracture behavior of concrete determined by the realistic aggregate numerical model[J]. Construction and Building Materials, 2019, 226: 802-817. [21] 中华人民共和国住房和城乡建设部. 普通混凝土配合比设计规程: JGJ 55—2011[S]. 北京: 中国建筑工业出版社, 2011. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Specifications for mix design of ordinary concrete: JGJ 55—2011[S]. Beijing: China Construction Industry Press, 2011 (in Chinese). [22] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 混凝土用再生粗骨料: GB/T 25177—2010[S]. 北京: 中国标准出版社, 2011. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, National Standardization Administration of China. Recycled coarse aggregate for concrete: GB/T 25177—2010[S]. Beijing: China Standards Publishing House, 2011 (in Chinese). [23] 王海超. 一种新型直剪式混凝土断裂性能测试试件及测试方法: CN116698572A[P]. 2025. WANG H C. A new type of direct shear concrete fracture performance test specimen and test method: CN116698572A[P]. 2025 (in Chinese). [24] MAANSER A, BENOUIS A, FERHOUNE N. Effect of high temperature on strength and mass loss of admixtured concretes[J]. Construction and Building Materials, 2018, 166(30): 916-921. [25] IVANKA N, IVANA K, IVICA G. The effect of high temperatures on the mechanical properties of concrete made with different types of aggregates[J]. Fire Safety Journal, 2011, 46: 425-430. [26] 胡岳峰, 王晓刚, 李基恒, 等. 再生混凝土火灾后残余力学性能研究[J]. 西部交通科技, 2024(9): 4-8. HU Y F, WANG X G, LI J H, et al. Study on residual mechanical properties of recycled concrete after fire[J]. Western China Communications Science & Technology, 2024(9): 4-8 (in Chinese). [27] YU K Q, YU J T, LU Z D, et al. Fracture properties of high-strength/high-performance concrete (HSC/HPC) exposed to high temperature[J]. Materials and Structures, 2016, 49(11): 4517-4532. [28] LIU X, YUAN Y M, Ye G, et al. Investigation on the mechanism of explosive spalling of high performance concrete at elevated temperatures[J]. China Civil Engineering Journal, 2008, 41(6): 61-68. [29] XU S L, REINHARDT H W, GAPPOEV M. Mode Ⅱ fracture testing method for highly orthotropic materials like wood[J]. International Journal of Fracture, 1996, 75(3): 185-214. [30] TADE H, PARIS P C, IRWIN G R. The stress analysis of cracks handbook[M]. Hellertown Pa: Del Research Corp, 1973. [31] YU Z P, ZHAN X F, JIAO M X, et al. Study on the fracture mechanical properties of high performance concrete (HPC) with rapid cooling after high temperature[J]. Construction and Building Materials, 2024, 422: 135718. |