BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2025, Vol. 44 ›› Issue (10): 3713-3724.DOI: 10.16552/j.cnki.issn1001-1625.2025.0348
• Solid Waste and Eco-Materials • Previous Articles Next Articles
ZHENG Dapeng1,2, YANG Jianxiang1, ZHAO Debo1, CUI Hongzhi1,2
Received:2025-04-03
Revised:2025-06-17
Online:2025-10-15
Published:2025-11-03
CLC Number:
ZHENG Dapeng, YANG Jianxiang, ZHAO Debo, CUI Hongzhi. Influence of Pore Structure on Transport Properties of AASF Mortar under Carbonation Curing[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(10): 3713-3724.
| [1] DUXSON P, PROVIS J L, LUKEY G C, et al. Understanding the relationship between geopolymer composition, microstructure and mechanical properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 269(1/2/3): 47-58. [2] BAKHAREV T. Durability of geopolymer materials in sodium and magnesium sulfate solutions[J]. Cement and Concrete Research, 2005, 35(6): 1233-1246. [3] LI X R, DENGLER J, HESSE C. Reducing clinker factor in limestone calcined clay-slag cement using C-S-H seeding: a way towards sustainable binder[J]. Cement and Concrete Research, 2023, 168: 107151. [4] SANDANAYAKE M, LAW D, SARGENT P. A new framework for assessing the environmental impacts of circular economy friendly soil waste-based geopolymer cements[J]. Building and Environment, 2022, 210: 108702. [5] LIU Q, YAN Y, HU Y C, et al. Carbonated waste paste calcined clay cement with enhanced CO2 mineralization and early strength[J]. Carbon Capture Science & Technology, 2025, 14: 100343. [6] DUXSON P, PROVIS J L, LUKEY G C, et al. The role of inorganic polymer technology in the development of ‘green concrete'[J]. Cement and Concrete Research, 2007, 37(12): 1590-1597. [7] GÖKÇE H S. Durability of slag-based alkali-activated materials: a critical review[J]. Journal of the Australian Ceramic Society, 2024, 60(3): 885-903. [8] 何 娟, 杨长辉. 碳化对碱矿渣水泥浆体微观结构的影响[J]. 建筑材料学报, 2012, 15(1): 126-130. HE J, YANG C H. Influence of carbonation on microstructure of alkali-activated slag cement pastes[J]. Journal of Building Materials, 2012, 15(1): 126-130 (in Chinese). [9] ZHENG D P, NI L Y, ZHANG C X, et al. CO2-mineralization strategy and mechanism of alkali-activated slag paste[J]. Construction and Building Materials, 2025, 463: 140086. [10] 万宗华, 张文芹, 刘志超, 等. 电石渣-矿渣复合胶凝材料性能研究[J]. 硅酸盐通报, 2022, 41(5): 1704-1714. WAN Z H, ZHANG W Q, LIU Z C, et al. Properties of carbide slag-slag composite cementitious material[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(5): 1704-1714 (in Chinese). [11] NEDELJKOVIC' M, GHIASSI B, VAN DER LAAN S, et al. Effect of curing conditions on the pore solution and carbonation resistance of alkali-activated fly ash and slag pastes[J]. Cement and Concrete Research, 2019, 116: 146-158. [12] 王一晓, 许耀群, 张 昂, 等. 矿化养护碱激发固废胶凝材料性能与环境影响的综合评价[J]. 硅酸盐通报, 2024, 43(3): 977-986. WANG Y X, XU Y Q, ZHANG A, et al. Comprehensive evaluation of performance and environmental impact of mineralization curing alkali activated solid waste cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(3): 977-986 (in Chinese). [13] DUNG N T, HOOPER T J N, UNLUER C. Accelerating the reaction kinetics and improving the performance of Na2CO3-activated GGBS mixes[J]. Cement and Concrete Research, 2019, 126: 105927. [14] KE X Y, BERNAL S A, PROVIS J L. Controlling the reaction kinetics of sodium carbonate-activated slag cements using calcined layered double hydroxides[J]. Cement and Concrete Research, 2016, 81: 24-37. [15] FERNÁNDEZ-JIMÉNEZ A, PUERTAS F. Setting of alkali-activated slag cement. Influence of activator nature[J]. Advances in Cement Research, 2001, 13(3): 115-121. [16] LIU T, YU Q L, BROUWERS H J H. In-situ formation of layered double hydroxides (LDHs) in sodium aluminate activated slag: the role of Al-O tetrahedra[J]. Cement and Concrete Research, 2022, 153: 106697. [17] PAUDEL S R, YANG M J, GAO Z L. pH level of pore solution in alkali-activated fly-ash geopolymer concrete and its effect on ASR of aggregates with different silicate contents[J]. Journal of Materials in Civil Engineering, 2020, 32(9): 04020257. [18] GHOLAMI S, KIM Y R, LITTLE D, et al. Carbonation of one-part alkali-activated materials incorporated by MgO: phase characteristics and micromechanical properties[J]. Construction and Building Materials, 2024, 441: 137400. [19] NGUYEN T N, PHUNG Q T, FREDERICKX L, et al. Microstructural evolution and its impact on the mechanical strength of typical alkali-activated slag subjected to accelerated carbonation[J]. Developments in the Built Environment, 2024, 19: 100519. [20] ZHAO Y L, LIU Z Q, ZHU J H, et al. The formation of CaCO3-based binder by carbonating high-dosage Ca(OH)2+slag+NaHCO3 (HCHSN) cement paste[J]. Journal of CO2 Utilization, 2024, 89: 102967. [21] ALREFAEI Y, WANG Y S, DAI J G, et al. Effect of superplasticizers on properties of one-part Ca(OH)2/Na2SO4 activated geopolymer pastes[J]. Construction and Building Materials, 2020, 241: 117990. [22] YANG J, BAI H, HE X Y, et al. Performances and microstructure of one-part fly ash geopolymer activated by calcium carbide slag and sodium metasilicate powder[J]. Construction and Building Materials, 2023, 367: 130303. [23] KLINKENBERG L J. The permeability of porous media to liquids and gases[J]. Drilling and Production Practice, 1941: 200-213. [24] PICANDET V, KHELIDJ A, BELLEGOU H. Crack effects on gas and water permeability of concretes[J]. Cement and Concrete Research, 2009, 39(6): 537-547. [25] HALL C, HOFF W D. Water transport in brick, stone and concrete[M]. London: Spon Press, 2012. [26] BROUGH A R, ATKINSON A. Sodium silicate-based, alkali-activated slag mortars Part I. strength, hydration and microstructure[J]. Cement and Concrete Research, 2002, 32(6): 865-879. [27] FERNÁNDEZ-JIMÉNEZ A, PUERTAS F, SOBRADOS I, et al. Structure of calcium silicate hydrates formed in alkaline-activated slag: influence of the type of alkaline activator[J]. Journal of the American Ceramic Society, 2003, 86(8): 1389-1394. [28] WANG S D, SCRIVENER K L. 29Si and 27Al NMR study of alkali-activated slag[J]. Cement and Concrete Research, 2003, 33(5): 769-774. [29] BAKHAREV T, SANJAYAN J G, CHENG Y B. Sulfate attack on alkali-activated slag concrete[J]. Cement and Concrete Research, 2002, 32(2): 211-216. [30] RAVIKUMAR D, PEETHAMPARAN S, NEITHALATH N. Structure and strength of NaOH activated concretes containing fly ash or GGBFS as the sole binder[J]. Cement and Concrete Composites, 2010, 32(6): 399-410. [31] BERNAL S A, MEJíA DE GUTIéRREZ R, PROVIS J L. Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends[J]. Construction and Building Materials, 2012, 33: 99-108. [32] FERNÁNDEZ-JIMÉNEZ A, PALOMO A, CRIADO M. Microstructure development of alkali-activated fly ash cement: a descriptive model[J]. Cement and Concrete Research, 2005, 35(6): 1204-1209. [33] OH J E, MONTEIRO P J M, JUN S S, et al. The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers[J]. Cement and Concrete Research, 2010, 40(2): 189-196. [34] ISMAIL I, BERNAL S A, PROVIS J L, et al. Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash[J]. Cement and Concrete Composites, 2014, 45: 125-135. [35] 吴中伟. 混凝土科学技术近期发展方向的探讨[J]. 硅酸盐学报, 1979, 7(3): 262-270. WU Z W. An approach to the recent trends of concrete science and technology[J]. Journal of the Chinese Ceramic Society, 1979, 7(3): 262-270 (in Chinese). [36] MEHTA P K. Studies on blended Portland cements containing Santorin earth[J]. Cement and Concrete Research, 1981, 11(4): 507-518. [37] MEHTA P K, MONTEIRO P. Concrete: microstructure, properties, and materials[M]. New York: McGraw Hill, 2006. [38] ZHANG M H, ISLAM J, PEETHAMPARAN S. Use of nano-silica to increase early strength and reduce setting time of concretes with high volumes of slag[J]. Cement and Concrete Composites, 2012, 34(5): 650-662. [39] ZHOU Y W, XI B, SUI L L, et al. Development of high strain-hardening lightweight engineered cementitious composites: design and performance[J]. Cement and Concrete Composites, 2019, 104: 103370. [40] HUANG Z Y, LIANG T T, HUANG B, et al. Ultra-lightweight high ductility cement composite incorporated with low PE fiber and rubber powder[J]. Construction and Building Materials, 2021, 312: 125430. [41] CHEN L J, KHAN M, DENG X W, et al. Chloride-induced corrosion propagation of alkali-activated slag mortar with pulverized fuel ash and metakaolin replacements[J]. Construction and Building Materials, 2023, 401: 132707. [42] HU X, SHI C J, SHI Z G, et al. Compressive strength, pore structure and chloride transport properties of alkali-activated slag/fly ash mortars[J]. Cement and Concrete Composites, 2019, 104: 103392. [43] MENG W N, KHAYAT K H. Effect of graphite nanoplatelets and carbon nanofibers on rheology, hydration, shrinkage, mechanical properties, and microstructure of UHPC[J]. Cement and Concrete Research, 2018, 105: 64-71. [44] KUNHANANDAN NAMBIAR E K, RAMAMURTHY K. Sorption characteristics of foam concrete[J]. Cement and Concrete Research, 2007, 37(9): 1341-1347. [45] RAVIKUMAR D, NEITHALATH N. Electrically induced chloride ion transport in alkali activated slag concretes and the influence of microstructure[J]. Cement and Concrete Research, 2013, 47: 31-42. [46] XIE N, SHI X M, DANG Y D, et al. Upcycling of waste materials: green binder prepared with pure coal fly ash[J]. Journal of Materials in Civil Engineering, 2016, 28(3): 04015138. [47] RUAN S Q, YAN D M, CHEN S K, et al. Process and mechanisms of multi-stage water sorptivity in hydrophobic geopolymers incorporating polydimethylsiloxane[J]. Cement and Concrete Composites, 2022, 128: 104460. |
| [1] | WANG Qianqian, DAI Hang, WANG Lichuan, ZHANG Chunyu, LI Liping, WANG Haiyan, ZHANG Jingjing. Durability Study of Cement-Sodium Silicate Double Slurry Grout Consolidation Body under Accelerated Erosion by High Chloride Salts [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(9): 3137-3146. |
| [2] | LI Xiangguo, SHI Xiangqin, AN Wandong, GONG Zhixiong, ZHANG Chengshan, LYU Yang. Influence of Iron Phase Modulation on Properties of High-Belite Ferroaluminate Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(9): 3127-3136. |
| [3] | YU Aiping, CHENG Zichen, LI Zhengkang, LI Xiuxin, LIU Yongqi, CHEN Xuandong. Effect of Seawater Fluidity on Chloride Ions Diffusion Performance in Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(9): 3238-3245. |
| [4] | DONG Faxin, XU Zifan, WANG Junfeng, LU Liulei, YE Weikai, SHANG Chunjing. Experimental Study on Solidification of Municipal Solid Waste Incineration Fly Ash Using High-Strength Sulfoaluminate Cement-Based Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(9): 3280-3287. |
| [5] | CHEN Kun, LIAO Qilong, LIU Laibao, WANG Fu, ZHU Hanzhen, SHI Xianpan, DAN Yong, ZHAO Peng. Influences of Different Foaming Agents on Microstructure and Properties of Lithium Slag Foam Glass [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(9): 3315-3325. |
| [6] | ZHU Yiyang, GENG Haining, LI Zonggang, MA Haosen, LUO Yang, CHEN Wei, LI Qiu. Preparation and Fireproof Performance of Geopolymer Lightweight Fire Resistant Coating [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(8): 3049-3060. |
| [7] | WANG Jiawei, LI Chuanhai, ZHANG Chong, ZHANG Xiuzhi. Effects of LDHs on Carbonation Resistance of Supersulfated Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(8): 2790-2800. |
| [8] | LI Wanrun, YAO Jianbing, ZHAO Wenhai, GAO Zhefeng, DU Yongfeng, ZHU Wenxuan. Printing Performance and Mechanical Properties of 3D Printed Concrete Mixed with Wind Turbine Blade Solid Waste [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(8): 2801-2813. |
| [9] | LI Jie, LI Shunkai, ZHAO Huan, ZENG Qinwei. Effect of Nano-TiO2 Modified Foaming Agent on Properties of Foam Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(8): 2839-2848. |
| [10] | PENG Yuyi, ZHU Tiemei, HAN Guoqi, LYU Mengfan, ZHANG Xinyu, WANG Yan. Impedance Performance of Concrete under Coupling Effect of Chloride Salts and Stray Currents [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(7): 2495-2502. |
| [11] | MA Lingyong, LIU Yandong, LIU Yang, JIANG Wei, LI Qing, DU Bin, FU Enmin, LI Dong. Effects of Water Temperature and Hydrogen Peroxide on Properties and Pore Structure of Foamed Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 1979-1987. |
| [12] | XU Cundong, YANG Baichang, WANG Hairuo, ZOU Xuan, WANG Zhihang, LI Bofei. Mechanical Properties of Basalt Fiber Concrete under Compound Salt Freezing Erosion [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2101-2110. |
| [13] | HE Xinxin, WU Xinjiang, WANG Zilong, WANG Jing, WU Hao, LI Dejun, WANG Xia. Influence and Mechanism of High-Performance Admixture on Performance of Tunnel Shotcrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2121-2134. |
| [14] | YUE Hongya, YUAN Yangjun, BI Yufeng, JI Zekun, XU Run, CHEN Wenxu, XIN Gongfeng, YANG Tao. Shrinkage Performance and Pore Structure of Nickel Slag-Ground Granulated Blast Furnace Slag Binary System Geopolymer [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2233-2239. |
| [15] | CUI Yifei, LIU Menghua, ZHANG Yicong, AI Weixia, XU Nuo. Performance and Environmental Impact of Ultra-High Performance Alkali-Activated Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1689-1702. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||