BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2025, Vol. 44 ›› Issue (10): 3634-3643.DOI: 10.16552/j.cnki.issn1001-1625.2025.0221
• Cement and Concrete • Previous Articles Next Articles
LI Yifei1, SHI Xinbo2, LIN Baochen3, WANG Wei2, XIAO Huigang1, LIU Jialin1
Received:2025-03-03
Revised:2025-07-16
Online:2025-10-15
Published:2025-11-03
CLC Number:
LI Yifei, SHI Xinbo, LIN Baochen, WANG Wei, XIAO Huigang, LIU Jialin. Prediction of Concrete Electric Flux Based on Machine Learning and Mix Proportion[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(10): 3634-3643.
| [1] MAAGE M. Service life model for concrete structures exposed to marine environment-initiation period[J]. ACI Materials Journal, 1996, 93(6): 602-608. [2] CALLEPARIDI M, MARCIALIS A, TURRIZIANI R. The kinetics of penetration of chloride ions into the concrete[J]. Industria Italianadel Cement, 1970, 67(4): 157-164. [3] 蔺鹏臻, 任锦波. 盐碱环境下氯化物侵蚀对混凝土桥梁耐久性的影响[J]. 硅酸盐通报, 2024, 43(9): 3235-3243. LIN P Z, REN J B. Effect of chloride erosion on durability of concrete bridges in saline alkali environments[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(9): 3235-3243 (in Chinese). [4] LIU Z Y, DONG Z J, ZHOU T, et al. Water vapor diffusion models in asphalt mortar considering adsorption and capillary condensation[J]. Construction and Building Materials, 2021, 308: 125049. [5] CORLESS R M, GONNET G H, HARE D E G, et al. On the LambertW function[J]. Advances in Computational Mathematics, 1996, 5(1): 329-359. [6] 鲁 浩. 考虑结合效应的混凝土中氯离子输运耦合模型及仿真研究[D]. 哈尔滨: 哈尔滨工程大学, 2023. LU H. Coupled model and simulation study of chloride ion transport in concrete considering binding effects[D]. Harbin: Harbin Engineering University, 2023 (in Chinese). [7] 郭冰冰, 陈 楠, 李京钊, 等. 基于机器学习的受压混凝土氯离子传输预测模型[J]. 建筑结构学报, 2025, 46(4): 198-209. GUO B B, CHEN N, LI J Z, et al. Prediction model for chloride ion transport in compressed concrete based on machine learning[J]. Journal of Building Structures, 2025, 46(4): 198-209 (in Chinese). [8] MUHAMMAD U J, AMINU I I, MAHMOUD I A, et al. An improved prediction of high-performance concrete compressive strength using ensemble models and neural networks[J]. AI in Civil Engineering, 2024, 3(1): 21. [9] 曹 斐, 周 彧, 王春晓, 等. 一种改进的支持向量回归的混凝土强度预测方法[J]. 硅酸盐通报, 2021, 40(1): 90-97. CAO F, ZHOU Y, WANG C X, et al. An improved support vector regression method for concrete strength prediction[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(1): 90-97 (in Chinese). [10] GOLAFSHANI E M, BEHNOOD A, ARASHPOUR M. Predicting the compressive strength of normal and high-performance concretes using ANN and ANFIS hybridized with grey wolf optimizer[J]. Construction and Building Materials, 2020, 232: 117266. [11] INTHATA S, KOWTANAPANICH W, CHEERAROT R. Prediction of chloride permeability of concretes containing ground pozzolans by artificial neural networks[J]. Materials and Structures, 2013, 46(10): 1707-1721. [12] GHAFOORI N, NAJIMI M, SOBHANI J, et al. Predicting rapid chloride permeability of self-consolidating concrete: a comparative study on statistical and neural network models[J]. Construction and Building Materials, 2013, 44: 381-390. [13] 石振武, 柳明亮. 电通量指标快速评价混凝土抗冻性试验研究[J]. 公路交通科技, 2014, 31(12): 31-38. SHI Z W, LIU M L. Experimental study on rapid evaluation of concrete freeze-thaw resistance using electric flux indicator[J]. Journal of Highway and Transportation Research and Development, 2014, 31(12): 31-38 (in Chinese). [14] 许 将, 陈洪光. 对铁路客运专线耐久性混凝土电通量试验方法的探讨[J]. 隧道建设, 2008, 28(6): 668-671. XU J, CHEN H G. Discussion on electric flux test method for durability concrete of railway passenger dedicated line[J]. Tunnel Construction, 2008, 28(6): 668-671 (in Chinese). [15] 陈 正, 蒋 翊, 邓 鹏. 混凝土抗氯离子渗透性能的多因素耦合分析及模型[J]. 混凝土, 2017(8): 45-50. CHEN Z, JIANG Y, DENG P. Multi-factor coupling analysis and model of concrete chloride ion penetration resistance[J]. Concrete, 2017(8): 45-50 (in Chinese). [16] 张 勇, 杜修力, 李 悦. 影响混凝土氯离子电通量因素的试验研究与分析[J]. 北京工业大学学报, 2013, 39(2): 198-202. ZHANG Y, DU X L, LI Y. Experimental study and analysis of factors affecting concrete chloride ion electric flux[J]. Journal of Beijing University of Technology, 2013, 39(2): 198-202 (in Chinese). [17] 袁英杰, 郭为强, 王坤林, 等. 预湿轻细骨料内养护混凝土微观结构与渗透性能[J]. 公路交通科技, 2019(1): 4-10. YUAN Y J, GUO W Q, WANG K L, et al. Microstructure and permeability of internally cured concrete with pre-wetted lightweight fine aggregate[J]. Journal of Highway and Transportation Research and Development, 2019(1): 4-10 (in Chinese). [18] 朱红光, 易 成, 孙辅延, 等. 氯盐浓度对混凝土中氯离子渗透的影响规律[J]. 建筑材料学报, 2016, 19(4): 725-729. ZHU H G, YI C, SUN F Y, et al. Influence of chloride concentration on chloride ion penetration in concrete[J]. Journal of Building Materials, 2016, 19(4): 725-729 (in Chinese). [19] 杜修力, 金浏, 张仁波. 荷载作用下开裂混凝土氯离子扩散行为影响述评[J]. 建筑材料学报, 2016, 19(1): 65-71. DU X L, JIN L, ZHANG R B. Review on the influence of load on chloride ion diffusion behavior of cracked concrete[J]. Journal of Building Materials, 2016, 19(1): 65-71 (in Chinese). [20] DAI J, YANG X, HE J, et al. Machine learning prediction of electric flux in concrete and mix proportion optimization design[J]. Materials Today Communications, 2023, 37: 107778. [21] WU Z, YANG J, ZHAO W Y, et al. Experimental study on the influence of mixing time on concrete performance under different mixing modes[J]. Science and Engineering of Composite Materials, 2021, 28(1): 20210061. [22] LUO Y, YUSSOF M M, JIANG Y, et al. Experimental study of the chloride-ion permeability of bamboo-fiber-reinforced concrete[J]. Materials and Technology, 2024, 58(1): 1-10. [23] WANG T, WAN X M, YU Q, et al. Investigation on electrical resistance of chloride penetration of alkali activated slag concrete[J]. Materials Science Forum, 2021, 1036: 378-385. [24] YAO X H, XI J Y, GUAN J F, et al. A review of research on mechanical properties and durability of concrete mixed with wastewater from ready-mixed concrete plant[J]. Materials, 2022, 15(4): 1386. [25] CHEN X, CONCIATORI D, SANCHEZ T, et al. Numerical modeling of multi-ionic transport with/without electrical field applied in sound and microcracked ordinary and ultra-high-performance fiber-reinforced concrete[J]. Archives of Civil and Mechanical Engineering, 2023, 23: 232. [26] SHI C, WU Z, LV K, et al. Relationship between chloride ion permeation resistance of recycled aggregate thermal insulation concrete and pore structure parameters[J]. Construction and Building Materials, 2023, 375: 130666. [27] HASAN T M, ALLENA S, GILBERT L. Rapid chloride penetration test: An evaluation of corrosion resistance in ultra-high performance concrete[J]. Journal of Building Engineering, 2023, 82: 108317. [28] LU T, LI Z, HUANG H. Application research on mechanical strength and durability of porous basalt concrete[J]. Korean Journal of Materials Research, 2022, 32(3): 115-124. [29] WANG M, HONG F, YU S, et al. Mix proportion design based on particle compact packing theory and research on the resistance of metakaolin to chloride salt erosion in UHPC cementitious system[J]. Construction and Building Materials, 2024, 447: 137982. [30] Li Y Y, Huang M X, Li J J, et al. Performance assessment of all-solid-waste high-strength concrete prepared from waste rock aggregates[J]. Materials, 2025, 18(3): 624. [31] WANG J, ZHANG M, LI H, et al. Orthogonal experimental study on hybrid-fiber high-durability concrete for marine environment[J]. Journal of Materials Research and Technology, 2021, 13: 1790-1804. [32] LI Y, ZHU W, ZHENG X, et al. Study on chloride attack resistance of concrete with lithium slag content[J]. Journal of Building Engineering, 2024, 97: 110723. [33] HU J, ZHANG Y, LI H, et al. Experimental study on the mechanical properties and impermeability of basalt-PVA hybrid fibre reinforced concrete[J]. Case Studies in Construction Materials, 2024, 21: e02899. [34] JI A, LUO M, ZHAO Y, et al. Modification of recycled aggregate using calcium carbonate formed by homogeneous precipitation and its application in concrete[J]. Construction and Building Materials, 2025, 462: 139998. [35] LIU W J, WANG Y B, LI Q B, et al. Research on interlayer bonding quality control method of dam concrete based on equivalent age[J]. Materials, 2021, 14(18): 5192. [36] HU J, ZHANG Y, LI H, et al. Feasibility and performance analysis of ordinary concrete prepared with autoclaved spherical porous aggregates from waste rock sawdust[J]. Case Studies in Construction Materials, 2024: e02899. [37] QI Z, LIU Y, ZHANG W. Study on salt-frost damage durability of high-performance concrete with polypropylene fiber[J]. Materials, 2025, 18(5): 1007. [38] ZHANG W, LI J, CHEN Z, et al. Durability evaluation of MICP-repaired concrete exposed to the freeze-thaw process[J]. Journal of Materials in Civil Engineering, 2024, 36(3): 04024012. [39] LI Y H, ZHU W B, ZHENG X M, et al. Study on chloride attack resistance of concrete with lithium slag content[J]. Journal of Building Engineering, 2024, 97: 110723. [40] PONTES J, REAL S, BOGAS J A. The rapid chloride migration test as a method to determine the chloride penetration resistance of concrete in marine environment[J]. Construction and Building Materials, 2023, 403: 133281. [41] 牛建刚, 边 钰, 刘威亨, 等. 高强轻骨料混凝土配合比设计方法及试验研究[J]. 硅酸盐通报, 2020, 39(11): 3480-3487. NIU J G, BIAN Y, LIU W H, et al. Mix proportion design method and experimental research of high-strength lightweight aggregate concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(11): 3480-3487 (in Chinese). [42] 宋进平, 李建平, 李昕成, 等. 早期养护及掺合料对表层混凝土渗透性能的影响[J]. 混凝土, 2020(2): 45-48. SONG J P, LI J P, LI X C, et al. Influence of early curing conditions and addition of supplementary cementitious materials on concrete performance of the permeability[J]. Concrete, 2020(2): 45-48 (in Chinese). [43] BEHNOOD A, GOLAFSHANI E M. Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multiobjective grey wolves[J]. Journal of Cleaner Production, 2018, 202: 54-64. [44] ILYUSHIN B B. On applicability of IQR method for filtering of experimental data[ J]. Journal of Engineering Thermophysics, 2024, 33(1): 1-8. [45] STAVIG G R. The normalized mean[J]. Perceptual and Motor Skills, 1982, 54(1): 51-54. [46] WAKJIRA T G, IBRAHIM M, EBEAD U, et al. Explainable machine learning model and reliability analysis for flexural capacity prediction of RC beams strengthened in flexure with FRCM[J]. Engineering Structures, 2022, 255: 113903. [47] ADNAN M, ALAROOD A A S, UDDIN M I, et al. Utilizing grid search cross-validation with adaptive boosting for augmenting performance of machine learning models[J]. Peer Computer Science, 2022, 8: e803. [48] 刘 春, 许鸽龙, 刘 方, 等. 粗骨料体积分数对混凝土耐久性的影响与机理研究[J]. 交通科技, 2020(5): 110-115. LIU C, XU G L, LIU F, et al. Influence of volume fraction of coarse aggregate on concrete durability and the effect mechanism[J]. Transportation Science & Technology, 2020(5): 110-115 (in Chinese). [49] CHUNG K L, KHARKOVSKY S. Monitoring of microwave properties of early-age concrete and mortar specimens[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 64(5): 1196-1203. [50] BEHERA S K, MISHRA D P, SINGH P, et al. Utilization of mill tailings, fly ash and slag as mine paste backfill material: review and future perspective[J]. Construction and Building Materials, 2021, 309: 125120. [51] MA J T, WANG D G, ZHAO S B, et al. Influence of particle morphology of ground fly ash on the fluidity and strength of cement paste[J]. Materials, 2021, 14(2): 283. [52] LUO Y P, LV Y R, WANG D F, et al. The influence of coarse aggregate gradation on the mechanical properties, durability, and plantability of geopolymer pervious concrete[J]. Construction and Building Materials, 2023, 382: 131246. [53] PIASTA W, ZARZYCKI B. The effect of cement paste volume and w/c ratio on shrinkage strain, water absorption and compressive strength ofhigh performance concrete[J]. Construction and Building Materials, 2017, 140: 395-402. [54] LIU B J, LUO G, XIE Y J. Effect of curing conditions on the permeability of concrete with high volume mineral admixtures[J]. Construction and Building Materials, 2018, 167: 359-371. [55] 刘性硕, 郭小睿. 冻融循环条件下引气剂对混凝土抗渗性和抗冻性影响的试验研究[J]. 科学技术与工程, 2016, 16(4): 241-245. LIU X S, GUO X R. Experiment study on the effect of air entraining agent on permeability resistance and freezing resistance of concrete with freezing and thawing[J]. Science Technology and Engineering, 2016, 16(4): 241-245 (in Chinese). |
| [1] | LIANG Qimin, WANG Zhe, MEI Yingjie, SUN Ao, LI Pengfei. Workability Prediction of Self-Compacting Concrete Based on CatBoost Optimization Algorithm [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(9): 3178-3187. |
| [2] | YI Qigui, ZHAN Lyujin, LIU Xiang, XU Ruitian, LIANG Ying, CHEN Zongping. Sodium Bicarbonate Solution Carbonation: a Novel Method to Enhance Recycled Aggregate Concrete Performance [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(9): 3227-3237. |
| [3] | YANG Qingyuan, WANG Yao, SHAN Hongri, LI Hui, CHEN Cong, JIANG Nengdong. Conventional Triaxial Compressive Mechanical Properties of Foamed Lightweight Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(9): 3246-3254. |
| [4] | LYU Jieqin, YUAN Hao, GAO Ling, WANG Yan, GU Yang, SUN Renjuan. Effect of Abrasion on Physical Properties and Apparent Morphology of Recycled Concrete Aggregates [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(9): 3218-3226. |
| [5] | WANG Lei, RAO Bin, ZHAO Yanru, XU Youjun, CHEN Ming. Fracture Mechanical Properties of Concrete Exposed on High Temperatures Based on DIC [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(9): 3196-3206. |
| [6] | YU Aiping, CHENG Zichen, LI Zhengkang, LI Xiuxin, LIU Yongqi, CHEN Xuandong. Effect of Seawater Fluidity on Chloride Ions Diffusion Performance in Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(9): 3238-3245. |
| [7] | LI Wanrun, YAO Jianbing, ZHAO Wenhai, GAO Zhefeng, DU Yongfeng, ZHU Wenxuan. Printing Performance and Mechanical Properties of 3D Printed Concrete Mixed with Wind Turbine Blade Solid Waste [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(8): 2801-2813. |
| [8] | SUN Haohao, WANG Yifei, LIU Huawei, WU Yiwen, WANG Youqiang, LIU Chao. Experimental and Numerical Simulation Study on Shear Performance of 3D Printed Concrete Masonry [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(8): 2814-2822. |
| [9] | ZHAO Yu, WANG Zhe, ZHU Lingli. Effect of Fiber on Rheological and Mechanical Properties of 3DP-UHPC [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(8): 2823-2838. |
| [10] | LI Jie, LI Shunkai, ZHAO Huan, ZENG Qinwei. Effect of Nano-TiO2 Modified Foaming Agent on Properties of Foam Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(8): 2839-2848. |
| [11] | HUANG Congbin, TAI Hongsheng, LUO Jugang. Effect of Pre-Wetted Biochar on Autogenous Shrinkage and Compressive Strength of Ultra-High Performance Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(7): 2458-2464. |
| [12] | HUANG Weilin, YU Jinru, SHANG Jun, WANG Zhongtang. Mechanical Properties and Permeability Resistance of Silane-Modified Graphene Oxide Enhanced Cement Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(7): 2419-2428. |
| [13] | HUANG Sheng, SUN Jiangtao, LI Zhitang, ZHU Zilong, SHEN Weiguo, SUN Zhijun, TAN Zonglin, WANG Guiming. Mesoscopic Simulation Study on Uniaxial Compression of Distributing-Filling Coarse Aggregate Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(7): 2437-2446. |
| [14] | ZHANG Wenlong, FENG Taotao, WANG Fengjuan, ZHANG Yu, WANG Xi, JIANG Jinyang. Improving Shrinkage and Cracking Resistance of Manufactured Sand Concrete Through Internal Curing with Super-Absorbent Polymer [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(7): 2447-2457. |
| [15] | PEI Qiang, YANG Yuhang, ZHONG Yingzhu, QI Pengfei, ZHANG Luxi. Effect of Basalt Fiber on Interlayer Bonding Properties of 3D Printed Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(7): 2465-2473. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||