硅酸盐通报 ›› 2026, Vol. 45 ›› Issue (1): 246-255.DOI: 10.16552/j.cnki.issn1001-1625.2025.0627
收稿日期:2025-06-27
修订日期:2025-08-31
出版日期:2026-01-20
发布日期:2026-02-10
通信作者:
张海波,教授。E-mail:zzhb@hpu.edu.cn
作者简介:杨茂生(1985—),男,高级工程师。主要从事水泥基注浆材料方面的研究。E-mail:wlhmyyms@163.com
基金资助:
YANG Maosheng1(
), ZHANG Haibo2(
)
Received:2025-06-27
Revised:2025-08-31
Published:2026-01-20
Online:2026-02-10
摘要:
铝酸盐水泥(CAC)在水化过程中易生成亚稳态相导致力学性能不稳定,限制了其在注浆加固工程中的应用。本文将CAC与石膏和石灰复配,以优化其水化行为并增强注浆材料的力学性能与稳定性,并通过水化温度测试、XRD、TG-DTG和SEM等方法揭示了CAC-石膏-石灰三元体系水泥基材料水化产物种类、含量及形貌的演化规律与机理。结果表明,可实现早期高强的最佳配合比范围为55%<m(CAC)<65%,5%<m(石灰)<15%,m(石膏)<30%。在该配合比范围内,固定CAC掺量条件下,随着石膏与石灰质量比的降低,试样抗压强度呈先升高后降低的趋势。此外,随着石膏掺量降低,片状水化铝酸二钙(2CaO·Al2O3·8H2O, C2AH8)由堆叠分布转变为与钙矾石晶体错落分布,致使试样的结构致密性下降,抗折与抗压强度均降低。研究结果为铝酸盐水泥基注浆材料在复杂工程环境中的应用提供了理论依据和技术支持。
中图分类号:
杨茂生, 张海波. 铝酸盐水泥-石膏-石灰三元体系水泥基注浆材料研究[J]. 硅酸盐通报, 2026, 45(1): 246-255.
YANG Maosheng, ZHANG Haibo. Research of Cement-Based Grouting Materials of Calcium Aluminate Cement-Gypsum-Lime Ternary System[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 246-255.
| Material | Mass fraction/% | ||||||
|---|---|---|---|---|---|---|---|
| Al2O3 | CaO | SiO2 | Fe2O3 | MgO | SO3 | TiO2 | |
| CAC | 54.35 | 31.76 | 7.06 | 1.65 | 0.70 | 0.87 | 1.89 |
| Gypsum | 0.23 | 39.40 | 2.83 | 0.03 | 1.36 | 54.16 | 0.60 |
| Lime | 1.18 | 91.72 | 2.48 | 0.28 | 2.44 | 1.19 | — |
表1 CAC、石膏和石灰的主要化学组成
Table 1 Main chemical composition of CAC, gypsum, and lime
| Material | Mass fraction/% | ||||||
|---|---|---|---|---|---|---|---|
| Al2O3 | CaO | SiO2 | Fe2O3 | MgO | SO3 | TiO2 | |
| CAC | 54.35 | 31.76 | 7.06 | 1.65 | 0.70 | 0.87 | 1.89 |
| Gypsum | 0.23 | 39.40 | 2.83 | 0.03 | 1.36 | 54.16 | 0.60 |
| Lime | 1.18 | 91.72 | 2.48 | 0.28 | 2.44 | 1.19 | — |
| No. | Mass fraction/% | ||
|---|---|---|---|
| CAC | Gypsum | Lime | |
| C30A70L0 | 30 | 70 | 0 |
| C40A60L0 | 40 | 60 | 0 |
| C40A48L12 | 40 | 48 | 12 |
| C40A36L24 | 40 | 36 | 24 |
| C40A30L30 | 40 | 30 | 30 |
| C40A24L36 | 40 | 24 | 36 |
| C40A12L48 | 40 | 12 | 48 |
| C40A0L60 | 40 | 0 | 60 |
| C50A50L0 | 50 | 50 | 0 |
| C50A40L10 | 50 | 40 | 10 |
| C50A30L20 | 50 | 30 | 20 |
| C50A25L25 | 50 | 25 | 25 |
| C50A20L30 | 50 | 20 | 30 |
| C50A10L40 | 50 | 10 | 40 |
| C50A0L50 | 50 | 0 | 50 |
| C60A40L0 | 60 | 40 | 0 |
| C60A32L8 | 60 | 32 | 8 |
| C60A24L16 | 60 | 24 | 16 |
| C60A20L20 | 60 | 20 | 20 |
| C60A16L24 | 60 | 16 | 24 |
| C60A8L32 | 60 | 8 | 32 |
| C60A0L40 | 60 | 0 | 40 |
| C70A30L0 | 70 | 30 | 0 |
| C70A24L6 | 70 | 24 | 6 |
| C70A18L12 | 70 | 18 | 12 |
| C70A15L15 | 70 | 15 | 15 |
| C70A12L18 | 70 | 12 | 18 |
| C70A6L24 | 70 | 6 | 24 |
| C80A20L0 | 80 | 20 | 0 |
| C80A16L4 | 80 | 16 | 4 |
| C80A12L8 | 80 | 12 | 8 |
| C80A8L12 | 80 | 8 | 12 |
| C80A4L16 | 80 | 4 | 16 |
| C80A0L20 | 80 | 0 | 20 |
| C90A10L0 | 90 | 10 | 0 |
| C90A8L2 | 90 | 8 | 2 |
| C90A6L4 | 90 | 6 | 4 |
| C90A5L5 | 90 | 5 | 5 |
| C90A4L6 | 90 | 4 | 6 |
| C90A2L8 | 90 | 2 | 8 |
| C90A0L10 | 90 | 0 | 10 |
| C100A0L0 | 100 | 0 | 0 |
表2 三元体系试验配合比
Table 2 Experimental mix proportion of ternary system
| No. | Mass fraction/% | ||
|---|---|---|---|
| CAC | Gypsum | Lime | |
| C30A70L0 | 30 | 70 | 0 |
| C40A60L0 | 40 | 60 | 0 |
| C40A48L12 | 40 | 48 | 12 |
| C40A36L24 | 40 | 36 | 24 |
| C40A30L30 | 40 | 30 | 30 |
| C40A24L36 | 40 | 24 | 36 |
| C40A12L48 | 40 | 12 | 48 |
| C40A0L60 | 40 | 0 | 60 |
| C50A50L0 | 50 | 50 | 0 |
| C50A40L10 | 50 | 40 | 10 |
| C50A30L20 | 50 | 30 | 20 |
| C50A25L25 | 50 | 25 | 25 |
| C50A20L30 | 50 | 20 | 30 |
| C50A10L40 | 50 | 10 | 40 |
| C50A0L50 | 50 | 0 | 50 |
| C60A40L0 | 60 | 40 | 0 |
| C60A32L8 | 60 | 32 | 8 |
| C60A24L16 | 60 | 24 | 16 |
| C60A20L20 | 60 | 20 | 20 |
| C60A16L24 | 60 | 16 | 24 |
| C60A8L32 | 60 | 8 | 32 |
| C60A0L40 | 60 | 0 | 40 |
| C70A30L0 | 70 | 30 | 0 |
| C70A24L6 | 70 | 24 | 6 |
| C70A18L12 | 70 | 18 | 12 |
| C70A15L15 | 70 | 15 | 15 |
| C70A12L18 | 70 | 12 | 18 |
| C70A6L24 | 70 | 6 | 24 |
| C80A20L0 | 80 | 20 | 0 |
| C80A16L4 | 80 | 16 | 4 |
| C80A12L8 | 80 | 12 | 8 |
| C80A8L12 | 80 | 8 | 12 |
| C80A4L16 | 80 | 4 | 16 |
| C80A0L20 | 80 | 0 | 20 |
| C90A10L0 | 90 | 10 | 0 |
| C90A8L2 | 90 | 8 | 2 |
| C90A6L4 | 90 | 6 | 4 |
| C90A5L5 | 90 | 5 | 5 |
| C90A4L6 | 90 | 4 | 6 |
| C90A2L8 | 90 | 2 | 8 |
| C90A0L10 | 90 | 0 | 10 |
| C100A0L0 | 100 | 0 | 0 |
| No. | Mass fraction/% | |||
|---|---|---|---|---|
| CAC | Gypsum | Lime | ||
| C55A41.2L3.8 | 55 | 41.2 | 3.8 | |
| C55A37.5L7.5 | 55 | 37.5 | 7.5 | |
| C55A33.7L11.3 | 55 | 33.7 | 11.3 | |
| C55A30.0L15.0 | 55 | 30.0 | 15.0 | |
| C60A36.7L3.3 | 60 | 36.7 | 3.3 | |
| C60A33.3L6.7 | 60 | 33.3 | 6.7 | |
| C60A30.0L10.0 | 60 | 30.0 | 10.0 | |
| C60A26.7L13.3 | 60 | 26.7 | 13.3 | |
| C65A32.1L2.9 | 65 | 32.1 | 2.9 | |
| C65A29.2L5.8 | 65 | 29.2 | 5.8 | |
| C65A26.2L8.8 | 65 | 26.2 | 8.8 | |
| C65A23.3L11.7 | 65 | 23.3 | 11.7 | |
表3 试验配合比
Table 3 Mix proportion of test
| No. | Mass fraction/% | |||
|---|---|---|---|---|
| CAC | Gypsum | Lime | ||
| C55A41.2L3.8 | 55 | 41.2 | 3.8 | |
| C55A37.5L7.5 | 55 | 37.5 | 7.5 | |
| C55A33.7L11.3 | 55 | 33.7 | 11.3 | |
| C55A30.0L15.0 | 55 | 30.0 | 15.0 | |
| C60A36.7L3.3 | 60 | 36.7 | 3.3 | |
| C60A33.3L6.7 | 60 | 33.3 | 6.7 | |
| C60A30.0L10.0 | 60 | 30.0 | 10.0 | |
| C60A26.7L13.3 | 60 | 26.7 | 13.3 | |
| C65A32.1L2.9 | 65 | 32.1 | 2.9 | |
| C65A29.2L5.8 | 65 | 29.2 | 5.8 | |
| C65A26.2L8.8 | 65 | 26.2 | 8.8 | |
| C65A23.3L11.7 | 65 | 23.3 | 11.7 | |
| [1] | 赵光明, 王艳芬, 艾 洁, 等. 矿用水泥基注浆材料的发展及展望[J]. 中国矿业大学学报, 2024, 53(1): 1-22. |
| ZHAO G M, WANG Y F, AI J, et al. Development and prospect of cement-based grouting materials for coal mine[J]. Journal of China University of Mining & Technology, 2024, 53(1): 1-22 (in Chinese). | |
| [2] | 徐长波. 矿用聚氨酯注浆加固材料存在问题及研究展望[J]. 陕西煤炭, 2024, 43(4): 142-145. |
| XU C B. Study and prospect on development of mine polyurethane grouting reinforcement materials[J]. Shaanxi Coal, 2024, 43(4): 142-145 (in Chinese). | |
| [3] |
MOFFATT E G, THOMAS M D A. Performance of rapid-repair concrete in an aggressive marine environment[J]. Construction and Building Materials, 2017, 132: 478-486.
DOI URL |
| [4] |
GRANDCLERC A, DANGLA P, GUEGUEN-MINERBE M, et al. Modelling of the sulfuric acid attack on different types of cementitious materials[J]. Cement and Concrete Research, 2018, 105: 126-133.
DOI URL |
| [5] |
KOKSAL F, COŞAR K, DENER M, et al. Insulating and fire-resistance performance of calcium aluminate cement based lightweight mortars[J]. Construction and Building Materials, 2023, 362: 129759.
DOI URL |
| [6] |
ACHER L, DE NOIRFONTAINE M N, CHARTIER D, et al. H2 production under gamma irradiation of a calcium aluminate cement: an experimental study on both cement pastes and its stable hydrates[J]. Radiation Physics and Chemistry, 2021, 189: 109689.
DOI URL |
| [7] |
KONONENKO O A, KOZLITIN E A. Monolith matrix of calcium aluminate and gypsum: promising material for incorporating NaNO3-containing liquid radioactive waste[J]. Journal of Radioanalytical and Nuclear Chemistry, 2023, 332(10): 4065-4073.
DOI |
| [8] |
MOSTAFA N Y, ZAKI Z I, HABD ELKADER O. Chemical activation of calcium aluminate cement composites cured at elevated temperature[J]. Cement and Concrete Composites, 2012, 34(10): 1187-1193.
DOI URL |
| [9] |
SAKAI E, SUGIYAMA T, SAITO T, et al. Mechanical properties and micro-structures of calcium aluminate based ultra high strength cement[J]. Cement and Concrete Research, 2010, 40(6): 966-970.
DOI URL |
| [10] | BENSTED J. Scientific aspects of high alumina cement[J]. Cement Wapno Beton, 2004, 9: 109-133. |
| [11] |
PACEWSKA B, NOWACKA M. Studies of conversion progress of calcium aluminate cement hydrates by thermal analysis method[J]. Journal of Thermal Analysis and Calorimetry, 2014, 117(2): 653-660.
DOI URL |
| [12] |
MIDGLEY H G, MIDGLEY A. The conversion of high alumina cement[J]. Magazine of Concrete Research, 1975, 27(91): 59-77.
DOI URL |
| [13] |
HIDALGO A, GARCÍA J L, ALONSO M C, et al. Microstructure development in mixes of calcium aluminate cement with silica fume or fly ash[J]. Journal of Thermal Analysis and Calorimetry, 2009, 96(2): 335-345.
DOI URL |
| [14] |
WANG F, SUN X K, TAO Z, et al. Effect of silica fume on compressive strength of ultra-high-performance concrete made of calcium aluminate cement/fly ash based geopolymer[J]. Journal of Building Engineering, 2022, 62: 105398.
DOI URL |
| [15] |
LIU K Q, MA Y, YUAN Z, et al. Optimisation of early hydration, microstructure, and elevated-temperature resistance of calcium aluminate cement using steel-making slag[J]. Ceramics International, 2022, 48(23): 35328-35339.
DOI URL |
| [16] |
ABOLHASANI A, NAZARPOUR H, DEHESTANI M. Effects of silicate impurities on fracture behavior and microstructure of calcium aluminate cement concrete[J]. Engineering Fracture Mechanics, 2021, 242: 107446.
DOI URL |
| [17] |
SON H M, PARK S, KIM H Y, et al. Effect of CaSO4 on hydration and phase conversion of calcium aluminate cement[J]. Construction and Building Materials, 2019, 224: 40-47.
DOI URL |
| [18] |
LI H X, XU C, LI L, et al. Insight into the influences of β-hemihydrate and dihydrate gypsum on the properties and phase conversion of white calcium aluminate cement[J]. Construction and Building Materials, 2020, 263: 120106.
DOI URL |
| [19] |
LI J C, CHANG J, WANG T, et al. Effects of phosphogypsum on hydration properties and strength of calcium aluminate cement[J]. Construction and Building Materials, 2022, 347: 128398.
DOI URL |
| [20] | PARK S M, JANG J G, SON H M, et al. Stable conversion of metastable hydrates in calcium aluminate cement by early carbonation curing[J]. Journal of CO2 Utilization, 2017, 21: 224-226. |
| [21] | ENGBERT A, PLANK J. Templating effect of alginate and related biopolymers as hydration accelerators for calcium alumina cement-a mechanistic study[J]. Materials & Design, 2020, 195: 109054. |
| [22] |
ENGBERT A, GRUBER S, PLANK J. The effect of alginates on the hydration of calcium aluminate cement[J]. Carbohydrate Polymers, 2020, 236: 116038.
DOI URL |
| [23] |
BORIS R, ANTONOVIČ V, KERIENĖ J, et al. The effect of carbon fiber additive on early hydration of calcium aluminate cement[J]. Journal of Thermal Analysis and Calorimetry, 2016, 125(3): 1061-1070.
DOI URL |
| [24] |
FERNÁNDEZ-CARRASCO L, TORRÉNS-MARTÍN D, MARTÍNEZ-RAMÍREZ S. Carbonation of ternary building cementing materials[J]. Cement and Concrete Composites, 2012, 34(10): 1180-1186.
DOI URL |
| [25] |
WANG Y L, YU J, WANG J J, et al. Effects of sodium aluminate and quicklime on the properties of CSA grouting materials[J]. Journal of Building Engineering, 2022, 58: 105060.
DOI URL |
| [26] |
LOU W B, GUAN B H, WU Z B. Calorimetric study of ternary binder of calcium aluminate cement, Portland-limestone cement and FGD gypsum[J]. Journal of Thermal Analysis and Calorimetry, 2010, 101(1): 119-127.
DOI URL |
| [27] |
ZHANG J J, LI G X, YANG X F, et al. Study on a high strength ternary blend containing calcium sulfoaluminate cement/calcium aluminate cement/ordinary Portland cement[J]. Construction and Building Materials, 2018, 191: 544-553.
DOI URL |
| [28] |
TORRENS-MARTÍN D, WINNEFELD F, FERNÁNDEZ-CARRASCO L J. Thermodynamic model for ternary OPC/CAC/calcium sulfate binders[J]. Construction and Building Materials, 2021, 302: 124120.
DOI URL |
| [29] |
PASTOR C, FERNÁNDEZ-JIMÉNEZ A, VÁZQUEZ T, et al. Calcium aluminate cement hydration in a high alkalinity environment[J]. Materiales de Construcción, 2009, 59(293): 21-34.
DOI URL |
| [30] |
ŠOUKAL F, KOPLÍK J, PTÁČEK P, et al. The influence of pH buffers on hydration of hydraulic phases in system CaO-Al2O3 [J]. Journal of Thermal Analysis and Calorimetry, 2016, 124(2): 629-638.
DOI URL |
| [31] |
BORIS R, WILIŃSKA I, PACEWSKA B, et al. Investigations of the influence of nano-admixtures on early hydration and selected properties of calcium aluminate cement paste[J]. Materials, 2022, 15(14): 4958.
DOI URL |
| [32] |
QOKU E, BIER T A, SCHMIDT G, et al. Impact of sulphate source on the hydration of ternary pastes of Portland cement, calcium aluminate cement and calcium sulphate[J]. Cement and Concrete Composites, 2022, 131: 104502.
DOI URL |
| [33] |
DING W W, HE Y J, LU L N, et al. Comparative study of hydration of monocalcium aluminate and quaternary phase and the amorphous AH3 phase in their hydrates[J]. Journal of Thermal Analysis and Calorimetry, 2020, 141(2): 707-716.
DOI |
| [1] | 王庆佩, 李辉, 郑伍魁, 袁文滨, 常宁, 周州. 砖渣基储能颗粒对石膏基自流平砂浆力学-热性能的影响[J]. 硅酸盐通报, 2026, 45(1): 212-226. |
| [2] | 何兆益, 邹萌, 姚启文, 曹东伟, 秦猛. 高掺量磷石膏-水泥-固化剂稳定碎石基层材料的性能及强度形成机理[J]. 硅酸盐通报, 2026, 45(1): 346-358. |
| [3] | 李相国, 史湘琴, 安万东, 龚志雄, 张呈山, 吕阳. 铁相调控对高贝利特铁铝酸盐水泥性能的影响[J]. 硅酸盐通报, 2025, 44(9): 3127-3136. |
| [4] | 董发鑫, 徐子凡, 汪峻峰, 鲁刘磊, 叶伟开, 尚春静. 高强硫铝酸盐水泥基材料固化垃圾焚烧飞灰的试验研究[J]. 硅酸盐通报, 2025, 44(9): 3280-3287. |
| [5] | 朱建平, 曹佳楠, 王祚麟, 李根深, 刘松辉, 郑波, 冯春花. 低钙高镁石灰石制备固碳熟料及其碳酸化硬化机理[J]. 硅酸盐通报, 2025, 44(8): 2762-2770. |
| [6] | 周益凡, 张伟业, 陈安见, 冉金林, 王东星. 地聚合物注浆材料性能增强及工程应用研究综述[J]. 硅酸盐通报, 2025, 44(8): 2873-2890. |
| [7] | 李义胜, 吕伟, 吴赤球, 余正康, 何静, 水中和. 高掺量磷石膏胶凝材料硬化体制备及其性能调节[J]. 硅酸盐通报, 2025, 44(8): 2944-2954. |
| [8] | 胡建林, 李智林, 周永祥, 冷发光, 杜修力. 生石灰激发高炉矿渣-粉煤灰地质聚合物固化土力学特性研究[J]. 硅酸盐通报, 2025, 44(8): 2912-2923. |
| [9] | 颜婉滢, 王东星, 聂利文. 全工业固废基高贝利特硫铝酸盐水泥熟料的制备与矿物形成微观机理[J]. 硅酸盐通报, 2025, 44(8): 2955-2964. |
| [10] | 曹瑞东, 王怡博, 赵杰, 陈镐杰, 段睿, 任琳杰. 水硬性石灰腐蚀行为的研究进展[J]. 硅酸盐通报, 2025, 44(7): 2355-2367. |
| [11] | 张普, 齐冬有, 王小可, 陈鹤元, 何昌毓, 张巍, 谢亚斌, 张冬. 海水干湿循环作用下铁铝酸盐水泥混凝土的力学性能和微观性能研究[J]. 硅酸盐通报, 2025, 44(7): 2429-2436. |
| [12] | 邓兴辉, 徐桂弘, 包立新, 徐韦洪, 陈孜伟, 杨步雷. 磷石膏基挤压异形砖(PG-ESB)力学性能及孔隙三参数分布特性[J]. 硅酸盐通报, 2025, 44(6): 2240-2249. |
| [13] | 唐芮枫, 王子明, 崔素萍, 赵思雪, 芮雅峰. 乙二胺四亚甲基膦酸对高贝利特硫铝酸盐水泥早期水化硬化的影响[J]. 硅酸盐通报, 2025, 44(6): 1988-1995. |
| [14] | 蒋恒, 柴虎成, 刘二层, 张海波, 宋常胜, 巩志力. 原位聚合对水泥基注浆加固材料性能的影响[J]. 硅酸盐通报, 2025, 44(6): 2149-2158. |
| [15] | 齐广政, 张强, 刘宣. 脱硫石膏对铝酸钙-电石渣协同激发超硫酸盐水泥水化特性的调控机理[J]. 硅酸盐通报, 2025, 44(6): 2250-2258. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||