硅酸盐通报 ›› 2025, Vol. 44 ›› Issue (7): 2355-2367.DOI: 10.16552/j.cnki.issn1001-1625.2024.1380
• 水泥混凝土 • 下一篇
曹瑞东1, 王怡博1, 赵杰2, 陈镐杰1, 段睿1, 任琳杰1
收稿日期:2024-11-13
修订日期:2025-02-06
出版日期:2025-07-15
发布日期:2025-07-24
作者简介:曹瑞东(1984—),男,博士,副教授。主要从事古建修补材料和技术的研究。E-mail:caoruidong@sxu.edu.cn
基金资助:CAO Ruidong1, WANG Yibo1, ZHAO Jie2, CHEN Haojie1, DUAN Rui1, REN Linjie1
Received:2024-11-13
Revised:2025-02-06
Published:2025-07-15
Online:2025-07-24
摘要: 水硬性石灰因优异的性能且与文物亲和力较强而被广泛用于历史建筑、岩土文物修复工作中。本文介绍了水硬性石灰的制备与性质,并对酸、碱、盐三类侵蚀环境下水硬性石灰宏观性能变化、改性后的性能提升及微观劣化机理进行了总结,旨在揭示水硬性石灰腐蚀行为的机理。研究表明,盐环境对水硬性石灰造成的损坏最严重,酸性环境次之,碱性环境最小。可以通过降低水胶比、加入火山灰材料和掺入改性剂来改善水硬性石灰生成物、孔隙率和微观形貌,以提高水硬性石灰的耐久性。最后指出水硬性石灰现阶段研究的不足,为水硬性石灰应对实际环境问题及新型建筑修复材料的研发提供参考与启示。
中图分类号:
曹瑞东, 王怡博, 赵杰, 陈镐杰, 段睿, 任琳杰. 水硬性石灰腐蚀行为的研究进展[J]. 硅酸盐通报, 2025, 44(7): 2355-2367.
CAO Ruidong, WANG Yibo, ZHAO Jie, CHEN Haojie, DUAN Rui, REN Linjie. Research Progress on Corrosion Behavior of Hydraulic Lime[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(7): 2355-2367.
| [1] GARIJO L, ZHANG X X, RUIZ G, et al. Age effect on the mechanical properties of natural hydraulic and aerial lime mortars[J]. Construction and Building Materials, 2020, 236: 117573. [2] AGGELAKOPOULOU E, BAKOLAS A, MOROPOULOU A. Properties of lime-metakolin mortars for the restoration of historic masonries[J]. Applied Clay Science, 2011, 53(1): 15-19. [3] 戴仕炳, 钟 燕, 胡战勇, 等. 明《天工开物》之“风吹成粉” 工法初步研究[J]. 文物保护与考古科学, 2018, 30(1): 106-11. DAI S B, ZHONG Y, HU Z Y, et al. Preliminary study of lime slaked by wind according to the book, Heavenly Creations (Chinese technology in the seventeenth century)[J]. Sciences of Conservation and Archaeology, 2018, 30(1): 106-113 (in Chinese). [4] 杨建林, 宋文伟, 王来贵, 等. 姜石合成水硬性石灰及物理力学性能研究[J]. 岩石力学与工程学报, 2018, 37(7): 1766-1775. YANG J L, SONG W W, WANG L G, et al. Research on the synthesis and physical-mechanical properties of hydraulic lime prepared from loess-doll[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(7): 1766-1775 (in Chinese). [5] 胡 敏, 唐 倩, 彭剑飞, 等. 我国大气颗粒物来源及特征分析[J]. 环境与可持续发展, 2011, 36(5): 15-19. HU M, TANG Q, PENG J F, et al. Study on characterization and source apportionment of atmospheric particulate matter in China[J]. Environment and Sustainable Development, 2011, 36(5): 15-19 (in Chinese). [6] ISEBAERT A, VAN PARYS L, CNUDDE V. Composition and compatibility requirements of mineral repair mortars forstone: a review[J]. Construction and Building Materials, 2014, 59: 39-50. [7] BAKHSHIPOUR Z, ASADI A, HUAT B B K, et al. Effect of acid rain on geotechnical properties of residual soils[J]. Soils and Foundations, 2016, 56(6): 1008-1020. [8] 李新明, 路广远, 张浩扬, 等. 石灰偏高岭土改良粉砂土强度特性与微观机理[J]. 建筑材料学报, 2021, 24(3): 648-655. LI X M, LU G Y, ZHANG H Y, et al. Strength characteristics and micro-mechanism of lime-metakaolin modified silty soil[J]. Journal of Building Materials, 2021, 24(3): 648-655 (in Chinese). [9] BELLMANN F, MÖSER B, STARK J. Influence of sulfate solution concentration on the formation of gypsum in sulfate resistance test specimen[J]. Cement and Concrete Research, 2006, 36(2): 358-363. [10] 李 黎, 赵林毅, 王金华, 等. 我国古代建筑中两种传统硅酸盐材料的物理力学特性研究[J]. 岩石力学与工程学报, 2011, 30(10): 2120-2127. LI L, ZHAO L Y, WANG J H, et al. Research on physical and mechanical characteristics of two traditional silicate materials in Chinese ancient buildings[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10): 2120-2127 (in Chinese). [11] 周伟强, 周 萍, 王永进. 砖石文物病害及分类概述[J]. 文博, 2014(6): 73-75. ZHOU W Q, ZHOU P, WANG Y J. Overview of diseases and classification of masonry cultural relics[J]. Relics and Museolgy, 2014(6): 73-75 (in Chinese). [12] 牛建刚, 刘威亨. 酸雨侵蚀混凝土研究进展[J]. 灾害学, 2020, 35(4): 147-150+168. NIU J G, LIU W H. Research progress on acid rain erosion of concrete[J]. Journal of Catastrophology, 2020, 35(4): 147-150+168 (in Chinese). [13] 宋明鸿, 王 成, 葛广华, 等. 氯盐-硫酸盐内外源耦合作用下现浇玄武岩纤维混凝土耐腐蚀试验[J]. 混凝土, 2024, (11): 43-50. SONG M H, WANG C, GE G H, et al. Corrosion resistance test of cast-in-place basalt fiber reinforced concrete under the coupling effect of internal and external chloride and sulfatep[J]. Concrete, 2024, (11): 43-50 (in Chinese). [14] 徐 飞, 杨隽永, 杨 毅. 水硬石灰作为贺兰口岩画加固材料的耐候性能研究[J]. 文物保护与考古科学, 2016, 28(4): 31-39. XU F, YANG J Y, YANG Y. Weather resistance of hydraulic lime used as a reinforcement material at the Helankou rock painting site[J]. Sciences of Conservation and Archaeology, 2016, 28(4): 31-39 (in Chinese). [15] 徐树强. 文物建筑修复用天然水硬性石灰的有机/无机复合改性研究[D]. 北京: 北京科技大学, 2020. XU S Q. Study on organic/inorganic composite modification of natural hydraulic lime for restoration of historic buildings[D]. Beijing: University of Science and Technology Beijing, 2020 (in Chinese). [16] 薄 艾, 张大江, 王璜琪, 等. 煅烧工艺对天然水硬性石灰中硅酸二钙晶相转变的影响[J]. 硅酸盐通报, 2022, 41(4): 1336-1342. BO A, ZHANG D J, WANG H Q, et al. Influence of calcination process on C2S crystal transformation in natural hydraulic lime[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(4): 1336-1342 (in Chinese). [17] 彭反三. 天然水硬性石灰[J]. 石灰, 2009, 3: 44-48. PENG F S. Natural hydraulic lime[J]. Lime, 2009, 3: 44-48 (in Chinese). [18] 肖建强. 水硬性石灰的设计制备与性能研究[D]. 南京: 东南大学, 2015. XIAO J Q. Research on the preparation and properties of hydraulic lime[D]. Nanjing: Southeast University, 2015 (in Chinese). [19] 戴仕炳, 王金华, 胡 源, 等. 天然水硬性石灰的历史及其在文物和历史建筑保护中的应用研究[C]//中国石灰工业技术交流与合作大会论文集, 2009, 149-162. DAI S B, WANG J H, HU Y, et al. A study on the history of natural hydraulic-lime and its application in the conservation of cultural relics and historic buildings[C]//Proceedings of the China Lime Industry Technology Exchange and Cooperation Conference, 2009, 149-162 (in Chinese). [20] CHEN X, SHAN X R, SHI Z J, et al. Analysis of the spatio-temporal changes in acid rain and their causes in China (1998-2018)[J]. Journal of Resources and Ecology, 2021, 12(5): 593-599. [21] 徐树强. 天然水硬性石灰固化机理及其砂浆改性研究[D]. 北京: 北京化工大学, 2015. XU S Q. Study of hydration and carbonation mechanism of natural hydraulic lime and modification of its mortars[D]. Beijing: Beijing University of Chemical Technology, 2015 (in Chinese). [22] 张全政. 水胶比对天然水硬性石灰砂浆的影响及改性研究[D]. 淮南: 安徽理工大学, 2022. ZHANG Q Z. Influence of water binder ratio on natural hydraulic lime mortar and its modification[D]. Huainan: Anhui University of Science & Technology, 2022 (in Chinese). [23] 张大江. 水硬性石灰基材料的水化碳化机理和微结构演变机制研究[D]. 北京: 中国矿业大学(北京), 2021. ZHANG D J. Study on hydration and carbonation mechanism and micro-structural evolution of hydraulic lime based materials[D]. Beijing: China University of Mining & Technology, Beijing, 2021 (in Chinese). [24] XU S Q, WANG J L, MA Q L, et al. Study on the lightweight hydraulic mortars designed by the use of diatomite as partial replacement of natural hydraulic lime and masonry waste as aggregate[J]. Construction and Building Materials, 2014, 73: 33-40. [25] XU S Q, WANG J L, JIANG Q, et al. Study of natural hydraulic lime-based mortars prepared with masonry waste powder as aggregate and diatomite/fly ash as mineral admixtures[J]. Journal of Cleaner Production, 2016, 119: 118-127. [26] ZHANG D J, ZHAO J H, WANG D M, et al. Comparative study on the properties of three hydraulic lime mortar systems: natural hydraulic lime mortar, cement-aerial lime-based mortar and slag-aerial lime-based mortar[J]. Construction and Building Materials, 2018, 186: 42-52. [27] ZHANG D J, ZHAO J H, WANG D M, et al. Influence of pozzolanic materials on the properties of natural hydraulic lime based mortars[J]. Construction and Building Materials, 2020, 244: 118360. [28] ZHANG D J, FANG K Z, XU D, et al. Evaluation of the environmental medium erosion resistance of natural hydraulic lime and metakaolin-air lime mortars[J]. Case Studies in Construction Materials, 2023, 18: e02044. [29] 罗 凯. 天然水硬性石灰的设计制备及性能研究[D]. 绵阳: 西南科技大学, 2020. LUO K. Research on the preparation and performance of natural hydraulic lime[D]. Mianyang: Southwest University of Science and Technology, 2020 (in Chinese). [30] 张云升, 王晓辉, 肖建强, 等. 古建水硬性石灰材料的制备与耐久性能[J]. 建筑材料学报, 2018, 21(1): 143-149. ZHANG Y S, WANG X H, XIAO J Q, et al. Preparation and durability of hydraulic lime used as repairing materials for architectural heritage[J]. Journal of Building Materials, 2018, 21(1): 143-149 (in Chinese). [31] XU S Q, WANG J L, SUN Y Z. Effect of water binder ratio on the early hydration of natural hydraulic lime[J]. Materials and Structures, 2015, 48(10): 3431-3441. [32] 叶 良, 李强强, 孙平平, 等. 基于正交层次分析法的水硬性石灰注浆材料配合比优化试验研究[J]. 四川建筑科学研究, 2018, 44(2): 105-110. YE L, LI Q Q, SUN P P, et al. Experimental study on proportioning optimization of hydraulic lime grouting material based on orthogonal AHP[J]. Sichuan Building Science, 2018, 44(2): 105-110 (in Chinese). [33] ARIZZI A, CULTRONE G. Aerial lime-based mortars blended with a pozzolanic additive and different admixtures: a mineralogical, textural and physical-mechanical study[J]. Construction and Building Materials, 2012, 31: 135-143. [34] MARAVELAKI-KALAITZAKI P, BAKOLAS A, KARATASIOS I, et al. Hydraulic lime mortars for the restoration of historic masonry in Crete[J]. Cement and Concrete Research, 2005, 35(8): 1577-1586. [35] VEJMELKOVÁ E, KEPPERT M, KERNER Z, et al. Mechanical, fracture-mechanical, hydric, thermal, and durability properties of lime-metakaolin plasters for renovation of historical buildings[J]. Construction and Building Materials, 2012, 31: 22-28. [36] IZAGUIRRE A, LANAS J, J I Á. Ageing of lime mortars with admixtures: durability and strength assessment[J]. Cement and Concrete Research, 2010, 40(7): 1081-1095. [37] PAIVA H, ESTEVES L P, CACHIM P B, et al. Rheology and hardened properties of single-coat render mortars with different types of water retaining agents[J]. Construction and Building Materials, 2009, 23(2): 1141-1146. [38] SEABRA M P, PAIVA H, LABRINCHA J A, et al. Admixtures effect on fresh state properties of aerial lime based mortars[J]. Construction and Building Materials, 2009, 23(2): 1147-1153. [39] XU S Q, WANG W Z, YANG X C, et al. Experimental investigation on comprehensive performance of natural hydraulic lime-based mortars: effect of waterproof admixtures addition[J]. International Journal of Architectural Heritage, 2024, 18(11): 1627-1642. [40] ZHU H M, CHEN J N, LI H. Effect of ultrafine pozzolanic powders on durability of fabricated hydraulic lime[J]. Case Studies in Construction Materials, 2022, 17: e01191. [41] 贺 鹏. 偏高岭土-天然水硬性石灰胶凝材料的制备及其轻集料改性研究[D]. 西安: 陕西科技大学, 2020. HE P. Study on preparation of metakaolin-natural hydraulic lime cementitious material and modification of light aggregate[D]. Xi’an: Shaanxi University of Science & Technology, 2020 (in Chinese). [42] XU S Q, MA Q L, WANG J L. Combined effect of isobutyltriethoxysilane and silica fume on the performance of natural hydraulic lime-based mortars[J]. Construction and Building Materials, 2018, 162: 181-191. [43] 李 悦, 于鹏超, 刘金鹏, 等. 改性水硬性石灰基材料的制备与耐久性[J]. 北京工业大学学报, 2017, 43(2): 269-277. LI Y, YU P C, LIU J P, et al. Preparation and durability of modified hydraulic lime-based material[J]. Journal of Beijing University of Technology, 2017, 43(2): 269-277 (in Chinese). [44] DEMIRCAN R K, TAYEH B A, CELIK D N, et al. The effect of animal and synthetic fibers on the physico-mechanical durability and microstructure properties of natural hydraulic lime-based mortars[J]. Materials Today Communications, 2023, 35: 106041. [45] SHANMUGAVEL D, KUMARYADAV P, KHADIMALLAH M A, et al. Experimental analysis on the performance of egg albumen as a sustainable bio admixture in natural hydraulic lime mortars[J]. Journal of Cleaner Production, 2021, 320: 128736. [46] KAMAT A, LUBELLI B, SCHLANGEN E. Effect of a mixed-in crystallization inhibitor on the properties of hydraulic mortars[J]. AIMS Materials Science, 2022, 9(4): 628-641. [47] RAVI R, SELVARAJ T, SEKAR S K. Characterization of hydraulic lime mortar containing Opuntia ficus-indica as a bio-admixture for restoration applications[J]. International Journal of Architectural Heritage, 2016, 10(6): 714-725. [48] RAVI R, THIRUMALINI S. Effect of natural polymers from cissus glauca roxb on the mechanical and durability properties of hydraulic lime mortar[J]. International Journal of Architectural Heritage, 2019, 13(2): 229-243. [49] DESTEFANI M, FALCHI L, ZENDRI E. Proposal of new natural hydraulic lime-based mortars for the conservation of historical buildings[J]. Coatings, 2023, 13(8): 1418. [50] VENTOLÀ L, VENDRELL M, GIRALDEZ P, et al. Traditional organic additives improve lime mortars: new old materials for restoration and building natural stone fabrics[J]. Construction and Building Materials, 2011, 25(8): 3313-3318. [51] LOGANINA V I, SIMONOV E E, JEZIERSKI W, et al. Application of activated diatomite for dry lime mixes[J]. Construction and Building Materials, 2014, 65: 29-37. [52] 马昆林. 混凝土盐结晶侵蚀机理与评价方法[D]. 长沙: 中南大学, 2009. MA K L. Mechanism and evaluation method of salt crystallization attack on concrete[D]. Changsha: Central South University, 2009 (in Chinese). [53] 李田雨, 王维康, 李扬涛, 等. 超高性能海水海砂混凝土的硫酸盐腐蚀破坏机理研究[J]. 中国腐蚀与防护学报, 2023, 43(5): 1101-1110. LI T Y, WANG W K, LI Y T, et al. Corrosion failure mechanism of ultra-high-performance concretes prepared with sea water and sea sand in an artificial sea water containing sulfate[J]. Journal of Chinese Society for Corrosion and Protection, 2023, 43(5): 1101-1110 (in Chinese). [54] IKUMI T, CAVALARO S H P, SEGURA I, et al. Alternative methodology to consider damage and expansions in external sulfate attack modeling[J]. Cement and Concrete Research, 2014, 63: 105-116. [55] ZUO X B, SUN W, YU C. Numerical investigation on expansive volume strain in concrete subjected to sulfate attack[J]. Construction and Building Materials, 2012, 36: 404-410. [56] SOTIRIADIS K, MRÓZ R, MÁCOVÁ P, et al. Long-term sulfate resistance of synthesized cement systems with variable C3A/C4AF ratio at low temperature or ambient conditions: insights into the crystalline and amorphous phase assemblage[J]. Cement and Concrete Research, 2022, 160: 106902. [57] SILVA B A, FERREIRA PINTO A P, GOMES A. Natural hydraulic lime versus cement for blended lime mortars for restoration works[J]. Construction and Building Materials, 2015, 94: 346-360. [58] 宋哲航, 罗志明, 洪 军, 等. 硫酸盐与碳酸盐作用下碳硫硅钙石的生成研究[J]. 混凝土世界, 2022(9): 16-19. SONG Z H, LUO Z M, HONG J, et al. Study on the formation of thaumasite by the interaction of sulfate and carbonate[J]. China Concrete, 2022(9): 16-19 (in Chinese). [59] XU S Q, MA Q L, WANG J L, et al. Grouting performance improvement for natural hydraulic lime-based grout via incorporating silica fume and silicon-acrylic latex[J]. Construction and Building Materials, 2018, 186: 652-659. [60] DEGIRMENCI N, YILMAZ A. Use of diatomite as partial replacement for Portland cement in cement mortars[J]. Construction and Building Materials, 2009, 23(1): 284-288. [61] NAVRÁTILOVÁ E, ROVNANÍKOVÁ P. Pozzolanic properties of brick powders and their effect on the properties of modified lime mortars[J]. Construction and Building Materials, 2016, 120: 530-539. [62] CHANG Z T, SONG X J, MUNN R, et al. Using limestone aggregates and different cements for enhancing resistance of concrete to sulphuric acid attack[J]. Cement and Concrete Research, 2005, 35(8): 1486-1494. [63] YANG F W, ZHANG B J, PAN C C, et al. Traditional mortar represented by glutinous rice mortar-one of the major inventions in ancient China[J]. Chinese Science (Series E: Technical Science), 2009(1): 1-7. |
| [1] | 张宗洋, 沙马什布, 罗琦, 鲁刘磊, 叶伟开, 盛国栋, 张锋, 董发鑫, 刘明旺, 汪峻峰. 激发剂对单组分锂渣基地质聚合物流变及力学性能的影响[J]. 硅酸盐通报, 2025, 44(7): 2538-2548. |
| [2] | 于新, 王龙, 何平平, 刘雨松. 以黄金尾矿砂为细骨料的工程水泥基复合材料性能研究[J]. 硅酸盐通报, 2025, 44(7): 2566-2577. |
| [3] | 李相国, 包璐超, 何晨昊, 张呈山, 吕阳. 养护方式对硅酸镁水泥水化特性与力学性能的影响[J]. 硅酸盐通报, 2025, 44(7): 2368-2377. |
| [4] | 伊倩, 古军, 陈卫杰, 向浩, 郭正浩, 高升, 罗树琼. 煤矸石细骨料改性处理对砂浆性能的影响[J]. 硅酸盐通报, 2025, 44(6): 2193-2200. |
| [5] | 王家明, 李静, 杨曙光, 李耀环, 顾凯, 苑博文, 刘东升, 郭启龙. 砂中残留絮凝剂PAM对水泥砂浆流动度影响及其降解方法研究[J]. 硅酸盐通报, 2025, 44(6): 2026-2035. |
| [6] | 齐广政, 张强, 刘宣. 脱硫石膏对铝酸钙-电石渣协同激发超硫酸盐水泥水化特性的调控机理[J]. 硅酸盐通报, 2025, 44(6): 2250-2258. |
| [7] | 徐存东, 杨百昌, 王海若, 邹璇, 汪志航, 李博飞. 复合盐冻侵蚀下玄武岩纤维混凝土力学性能试验研究[J]. 硅酸盐通报, 2025, 44(6): 2101-2110. |
| [8] | 贺鑫鑫, 武鑫江, 王子龙, 王靖, 吴昊, 李德军, 王霞. 高性能掺合料对隧道喷射混凝土性能的影响及机理研究[J]. 硅酸盐通报, 2025, 44(6): 2121-2134. |
| [9] | 马春雨, 马跃辉, 吴定远, 徐利胜, 原学功, 朱珍, 李秋义, 王亮, 王美楠. 再生木纤维增强轻质高韧性高贝利特水泥砂浆性能研究[J]. 硅酸盐通报, 2025, 44(5): 1604-1611. |
| [10] | 骆展鹏, 熊春林, 韩泽军, 王胜新, 刘凯华. 矿渣-粉煤灰-玻璃粉复合固化盾构土力学性能及固化机制[J]. 硅酸盐通报, 2025, 44(5): 1803-1812. |
| [11] | 刘晨晨, 谢祥兵, 李广慧, 司马笑情, 张艺林, 司斌, 邵景干. 湿法碳化再生微粉性能评价及水泥净浆早期强度形成机理研究[J]. 硅酸盐通报, 2025, 44(5): 1834-1840. |
| [12] | 查文华, 蔡雨凯, 许涛, 钱育冬. 外加剂掺量对煤矸石喷射混凝土力学性能和抗渗性的影响[J]. 硅酸盐通报, 2025, 44(5): 1676-1688. |
| [13] | 闵锐, 刘馨怡, 杨甜甜, 王思莹, 刘文欢, 李辉. 循环流化床固硫灰-矿粉复合胶凝材料的性能、水化产物及其应用[J]. 硅酸盐通报, 2025, 44(5): 1813-1823. |
| [14] | 张会芳, 陈洁, 王磊, 李晓辰, 李金珠, 刘凯宏, 曹慧, 任泽江, 刘哲颖. 酸激发剂对固废材料及其灌浆料性能的影响[J]. 硅酸盐通报, 2025, 44(5): 1788-1802. |
| [15] | 钟传利, 苏旭, 张亮, 孔子航, 李海天, 朱庆楠, 常洪雷. 碳化再生细骨料对再生砂浆与混凝土力学性能的影响[J]. 硅酸盐通报, 2025, 44(4): 1468-1476. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||