[1] ZHANG Y, LIU Q Y, WANG L G, et al. Multiscale mechanical behavior of calcium silicate hydrates: insights from experiments and coarse-grained computation[J]. ACS Applied Materials & Interfaces, 2025, 17(22): 32752-32763. [2] WANG J W, GAO C, TANG J H, et al. The multi-scale mechanical properties of calcium-silicate-hydrate[J]. Cement and Concrete Composites, 2023, 140: 105097. [3] TANG S W, WANG Y, GENG Z C, et al. Structure, fractality, mechanics and durability of calcium silicate hydrates[J]. Fractal and Fractional, 2021, 5(2): 47. [4] ZHANG G Z, LI Y, YANG J, et al. Insight into the strengthening mechanism of the Al-induced cross-linked calcium aluminosilicate hydrate gel: a molecular dynamics study[J]. Frontiers in Materials, 2021, 7: 611568. [5] YANG J, DING Q J, ZHANG G Z, et al. Effect of sulfate attack on the composition and micro-mechanical properties of CASH gel in cement-slag paste: A combined study of nanoindentation and SEM-EDS[J]. Construction and Building Materials, 2022, 345: 128275. [6] LI D B, QI Q D, LIU Q L, et al. Uniaxial tensile study of calcium aluminosilicate hydrate (CASH): Structure, dynamics and mechanical properties[J]. Materials Today Communications, 2024, 38: 107854. [7] OZÇELIK V O, GARG N, WHITE C E. Symmetry-induced stability in alkali-doped calcium silicate hydrate[J]. The Journal of Physical Chemistry C, 2019, 123(22): 14081-14088. [8] GARG N, ÖZÇELIK V O, SKIBSTED J, et al. Nanoscale ordering and depolymerization of calcium silicate hydrates in the presence of alkalis[J]. The Journal of Physical Chemistry C, 2019, 123(40): 24873-24883. [9] ONGUN ÖZÇELIK V, WHITE C E. Nanoscale charge-balancing mechanism in alkali-substituted calcium-silicate-hydrate gels[J]. The Journal of Physical Chemistry Letters, 2016, 7(24): 5266-5272. [10] JAHN S. Molecular simulations of oxide and silicate melts and glasses[J]. Reviews in Mineralogy and Geochemistry, 2022, 87(1): 193-227. [11] MIN F F, WANG L J, CHEN J, et al. Molecular simulation in surface hydration of clay minerals: a review of theory and applications[J]. Minerals and Mineral Materials, 2022, 1: 3. [12] BAÑUELOS J L, BORGUET E, BROWN G E, et al. Oxide- and silicate-water interfaces and their roles in technology and the environment[J]. Chemical Reviews, 2023, 123(10): 6413-6544. [13] ZHENG Q, JIANG J Y, YU J, et al. Aluminum-induced interfacial strengthening in calcium silicate hydrates: structure, bonding, and mechanical properties[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(7): 2622-2631. [14] ZHANG Y, WU J D, WANG L G, et al. Atomic-level structure evolution of calcium silicate hydrate nucleation process, the amorphous-to-crystalline pathway[J]. Journal of the American Ceramic Society, 2024, 107(7): 5022-5035. [15] SHEN X Y, FENG P, LIU X, et al. New insights into the non-classical nucleation of C-S-H[J]. Cement and Concrete Research, 2023, 168: 107135. [16] HOU D S, ZHAO T J, MA H Y, et al. Reactive molecular simulation on water confined in the nanopores of the calcium silicate hydrate gel: structure, reactivity, and mechanical properties[J]. The Journal of Physical Chemistry C, 2015, 119(3): 1346-1358. [17] PELLENQ R J, KUSHIMA A, SHAHSAVARI R, et al. A realistic molecular model of cement hydrates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(38): 16102-16107. [18] ZHANG Y, GUO L, SHI J Y, et al. Full process of calcium silicate hydrate decalcification: molecular structure, dynamics, and mechanical properties[J]. Cement and Concrete Research, 2022, 161: 106964. [19] YANG J, HOU D S, DING Q J. Structure, dynamics, and mechanical properties of cross-linked calcium aluminosilicate hydrate: a molecular dynamics study[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 9403-9417. [20] WAN X M, HOU D S, ZHAO T J, et al. Insights on molecular structure and micro-properties of alkali-activated slag materials: a reactive molecular dynamics study[J]. Construction and Building Materials, 2017, 139: 430-437. [21] HEKAL E E, KISHAR E, MOSTAFA H. Magnesium sulfate attack on hardened blended cement pastes under different circumstances[J]. Cement and Concrete Research, 2002, 32(9): 1421-1427. [22] TAN Y S, YU H F, MA H Y, et al. Study on the micro-crack evolution of concrete subjected to stress corrosion and magnesium sulfate[J]. Construction and Building Materials, 2017, 141: 453-460. [23] GONG W, YU H F, MA H Y, et al. Study on the basic performance of basic magnesium sulfate cement concrete[J]. Emerging Materials Research, 2020, 9(3): 618-627. |