欢迎访问《硅酸盐通报》官方网站,今天是

硅酸盐通报 ›› 2025, Vol. 44 ›› Issue (11): 4235-4251.DOI: 10.16552/j.cnki.issn1001-1625.2025.0777

• 重大工程材料设计与服役评价 • 上一篇    下一篇

基于机器学习的防护与修复混凝土寿命智能预测方法

王凤娟1,2, 李映泽1,2, 王赟程1,2, 石锦炎1,2, 刘志勇1,2, 蒋金洋1,2   

  1. 1.重大基础设施工程材料全国重点实验室,南京 211189;
    2.东南大学材料科学与工程学院,南京 211189
  • 收稿日期:2025-08-01 修订日期:2025-09-15 出版日期:2025-11-15 发布日期:2025-12-04
  • 通信作者: 李映泽,博士研究生。E-mail:230238681@seu.edu.cn
  • 作者简介:王凤娟(1992—),女,博士,教授。主要从事混凝土智能设计方面的研究。E-mail:fjwang1118@163.com
  • 基金资助:
    国家重点研发计划(2021YFF0500803);国家自然科学基金面上项目(52479120)

Intelligent Prediction Method for Lifespan of Protected and Repaired Concrete Based on Machine Learning

WANG Fengjuan1,2, LI Yingze1,2, WANG Yuncheng1,2, SHI Jinyan1,2, LIU Zhiyong1,2, JIANG Jinyang1,2   

  1. 1. National Key Laboratory of Major Engineering Materials for Infrastructure, Nanjing 211189, China;
    2. School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
  • Received:2025-08-01 Revised:2025-09-15 Published:2025-11-15 Online:2025-12-04

摘要: 为定量评估防护与修复措施对混凝土结构寿命的影响,本研究提出了一种基于机器学习的智能预测方法。基于工程先验知识的数值求解方法,构建了综合考虑环境因素、混凝土材料参数及防护与修复措施参数的10万组样本数据集,系统性评估了12种主流机器学习模型,并选用基于贝叶斯超参数优化的极端梯度提升(XGBoost)算法进行回归预测,完成了SHapley Additive exPlanations(SHAP)框架对优化后模型的深度可解释性分析。结果表明,优化后的XGBoost模型在测试集上决定系数R2可达到0.986 5。SHAP分析结果量化了各特征对寿命预测的贡献度,识别出了环境氯盐浓度、粉煤灰掺量和水胶比是影响寿命预测的关键因素,揭示了多因素间的复杂非线性关系。本研究建立的高精度、可解释机器学习预测模型,为防护与修复混凝土结构的耐久性设计、性能评估与维养决策提供了高效可靠的数据驱动分析工具。

关键词: 机器学习, 回归预测, 防护与修复, 混凝土寿命, XGBoost, SHAP

Abstract: To quantitatively evaluate the effects of protection and repair measures on the service life of concrete structures, this study proposed an intelligent prediction method based on machine learning. Based on the numerical solution method incorporating engineering prior knowledge, a dataset comprising 100 000 sample groups comprehensively considering environmental factors, concrete materials parameters, and parameters of protection and repair measures was constructed. Twelve mainstream machine learning models were systematically assessed, and the extreme gradient Boosting (XGBoost) algorithm based on Bayesian hyperparameter optimization was selected for regression prediction. Concurrently, an in-depth interpretability analysis of the optimized model was conducted using the SHapley Additive exPlanations (SHAP) framework. The results indicate that the of the optimized XGBoost model determination coefficient R2 is 0.986 5 on the test set. The SHAP analysis quantify the contribution of each feature to the lifespan prediction, identifying environmental chloride concentration, fly ash content, and water-binder ratio as key factors influencing lifespan prediction. Furthermore, SHAP reveals the complex non-linear relationships among various factors. The high-precision, interpretable machine learning predicted model developed in this study provides an efficient and reliable data-driven analytical tool for the durability design, performance assessment, and maintenance decision-making for protected and repaired concrete structures.

Key words: machine learning, regression prediction, protection and repair, concrete lifespan, XGBoost, SHAP

中图分类号: