[1] LI J Q, WU Z M, SHI C J, et al. Durability of ultra-high performance concrete: a review[J]. Construction and Building Materials, 2020, 255: 119296. [2] TANG S W, YAO Y, ANDRADE C, et al. Recent durability studies on concrete structure[J]. Cement and Concrete Research, 2015, 78: 143-154. [3] CAO Y, GEHLEN C, ANGST U, et al. Critical chloride content in reinforced concrete: an updated review considering chinese experience[J]. Cement and Concrete Research, 2019, 117: 58-68. [4] BOLZONI F, BRENNA A, ORMELLESE M. Recent advances in the use of inhibitors to prevent chloride-induced corrosion in reinforced concrete[J]. Cement and Concrete Research, 2022, 154: 106719. [5] 刘 镇. 海洋环境下混凝土氯离子渗透性评价[J]. 硅酸盐学报, 2023, 51 (11): 2846-2856. LIU Z. Evaluation of chloride ion permeability of concrete in marine environments[J]. Journal of the Chinese Ceramic Society, 2023, 51 (11): 2846-2856 (in Chinese). [6] ALEXANDER M, BEUSHAUSEN H. Durability, service life prediction, and modelling for reinforced concrete structures-review and critique[J]. Cement and Concrete Research, 2019, 122: 17-29. [7] SHAKOURI M, TREJO D. A time-variant model of surface chloride build-up for improved service life predictions[J]. Cement and Concrete Composites, 2017, 84: 99-110. [8] MA J W, YANG Q W, WANG X H, et al. Review of prediction models for chloride ion concentration in concrete structures[J]. Buildings, 2025, 15(1): 149. [9] 杨 策, 张金喜, 丁勇杰, 等. 混凝土氯离子侵蚀与冻融循环劣化的数值模拟研究综述[J]. 北京工业大学学报, 2025: 1-24. YANG C, ZHANG J X,DING Y J, et al. Review of numerical simulation on chloride penetration and freeze-thaw cycle deterioration of concrete[J]. Journal of Beijing University of Technology, 2025: 1-24 (in Chinese). [10] 蒋金洋, 刘志勇, 许文祥, 等. 混凝土多目标性能预测与智能设计系统[M]. 南京: 东南大学出版社, 2023. JIANG J Y, LIU Z Y, XU W X, et al. Multi-performance prediction and intelligent design system of concrete[M]. Nanjing: Southeast University Press, 2023 (in Chinese). [11] 张大利, 宁作君, 郑秀梅, 等. 复杂环境下钢筋混凝土结构寿命预测研究进展[J]. 混凝土, 2023(8): 8-13+22. ZHANG D L, NING Z J, ZHENG X M, et al. Research progress on life prediction of reinforced concrete structures in complex environment[J]. Concrete, 2023(8): 8-13+22 (in Chinese). [12] CAI R, HAN T H, LIAO W Y, et al. Prediction of surface chloride concentration of marine concrete using ensemble machine learning[J]. Cement and Concrete Research, 2020, 136: 106164. [13] 刘 晓, 王思迈, 卢 磊, 等. 机器学习预测混凝土材料耐久性的研究进展[J]. 硅酸盐学报, 2023, 51 (8): 2062-2073. LIU X, WANG S M, LU L, et al. Development on machine learning for durability prediction of concrete materials [J]. Journal of the Chinese Ceramic Society, 2023, 51 (8): 2062-2073 (in Chinese). [14] 罗大明, 李 凡, 牛荻涛. 人工智能时代混凝土结构耐久性诊断研究进展[J]. 建筑结构学报, 2024, 45 (2): 1-13. LUO D M, LI F, NIU D T. Research progress on durability diagnosis of concrete structures based on artificial intelligence[J]. Journal of Building Structures, 2024, 45 (2): 1-13 (in Chinese). [15] 覃 源, 薛 存, 李 遥, 等. 盐冻耦合作用下水工混凝土耐久性及寿命预测[J]. 水力发电学报, 2024, 43(2): 110-122. QIN Y, XUE C, LI Y, et al. Durability and lifespan predictions of hydraulic concrete under salt freezing coupling effect[J]. Journal of Hydroelectric Engineering, 2024, 43(2): 110-122 (in Chinese). [16] 宋庆功, 常斌斌, 董珊珊, 等. 机器学习及其在材料研发中的作用[J]. 材料导报, 2022, 36 (1): 183-189. SONG Q G, CHANG B B, DONG S S, et al. Machine learning and its influence on materials research and development[J]. Materials Reports, 2022, 36 (1): 183-189 (in Chinese). [17] LI Z Z, YOON J, ZHANG R, et al. Machine learning in concrete science: applications, challenges, and best practices[J]. NPJ Computational Materials, 2022, 8: 127. [18] ZHANG M L, KANG R. Machine learning methods for predicting the durability of concrete materials: a review[J]. Advances in Cement Research, 2025: 1-16. [19] TAFFESE W Z, ESPINOSA-LEAL L. Prediction of chloride resistance level of concrete using machine learning for durability and service life assessment of building structures[J]. Journal of Building Engineering, 2022, 60: 105146. [20] TAFFESE W Z, SISTONEN E. Machine learning for durability and service-life assessment of reinforced concrete structures: recent advances and future directions[J]. Automation in Construction, 2017, 77: 1-14. [21] ZHANG H P, LI X C, AMIN M N, et al. Analyzing chloride diffusion for durability predictions of concrete using contemporary machine learning strategies[J]. Materials Today Communications, 2024, 38: 108543. [22] TAFFESE W Z, HILLOULIN B, VILLAGRAN ZACCARDI Y, et al. Machine learning in concrete durability: challenges and pathways identified by RILEM TC 315-DCS towards enhanced predictive models[J]. Materials and Structures, 2025, 58(4): 145. [23] YU X R, LI J H, YU Y, et al. Advancing service life estimation of reinforced concrete considering the coupling effects of multiple factors: hybridized physical testing and machine learning approach[J]. Journal of Building Engineering, 2024, 84: 108476. [24] AGHAEE K, ROSHAN A. Predicting time to cracking of concrete composites under restrained shrinkage: a review with insights from statistical analysis and ensemble machine learning approaches[J]. Journal of Building Engineering, 2024, 97: 110856. [25] WANG Z Y, LIU H H, AMIN M N, et al. Optimizing machine learning techniques and SHapley Additive exPlanations (SHAP) analysis for the compressive property of self-compacting concrete[J]. Materials Today Communications, 2024, 39: 108804. [26] 周双喜, 盛 伟, 何顺爱. 基于深度学习的氯盐环境下高性能混凝土氯离子扩散系数的预测[J]. 混凝土, 2019 (7): 27-31. ZHOU S X, SHENG W, HE S A. Prediction of chloride diffusion coefficient of high performance concrete based on depth learning in chloride environment[J]. Concrete, 2019 (7): 27-31 (in Chinese). [27] 孔祥清, 张明亮, 康 然, 等. 机器学习用于预测混凝土性能的研究进展[J]. 科学技术与工程, 2025, 25(5): 1764-1773. KONG X Q, ZHANG M L, KANG R, et al. Review on machine learning for predicting concrete properties[J]. Science Technology and Engineering, 2025, 25(5): 1764-1773 (in Chinese). [28] ZIOLKOWSKI P, NIEDOSTATKIEWICZ M. Machine learning techniques in concrete mix design[J]. Materials, 2019, 12(8): 1256. [29] CHEN H Y, CAO Y, LIU Y, et al. Enhancing the durability of concrete in severely cold regions: mix proportion optimization based on machine learning[J]. Construction and Building Materials, 2023, 371: 130644. [30] YU X R. Developing an artificial neural network model to predict the durability of the RC beam by machine learning approaches[J]. Case Studies in Construction Materials, 2022, 17: e01382. [31] WANG Y C, WANG L X, MIAO Y C, et al. Numerical simulation of convection-diffusion coupling transport of water and chloride in coated concrete[J]. Journal of Materials in Civil Engineering, 2024, 36(12): 04024424. [32] FENG T T, YU H F, TAN Y S, et al. Service life design for concrete engineering in marine environments of northern china based on a modified theoretical model of chloride diffusion and large datasets of ocean parameters[J]. Engineering, 2022, 17: 123-139. [33] 中国工程建设标准化协会. 严酷环境混凝土结构耐久性设计标准: T/CECS 1203—2022[S]. 北京: 中国建筑工业出版社, 2022. Chinese Association for Engineering Construction Standardization. Standard for design of concrete structure durability in severe environments: T/CECS 1203—2022[S]. Beijing: China Planning Press, 2022 (in Chinese). [34] 中华人民共和国交通运输部. 公路工程混凝土结构耐久性设计规范: JTG/T 3310—2019[S]. 北京: 人民交通出版社, 2019. Ministry of Transport of the People's Republic of China. Code for durability design of concrete structures in highway engineering: JTG/T 3310—2019[S]. Beijing: China Communications Press Co., Ltd, 2019 (in Chinese). [35] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 混凝土外加剂应用技术规范: GB 50119—2013[S]. 北京: 中国建筑工业出版社, 2013. Ministry of Housing and Urban-Rural Development of the People's Republic of China, State Administration for Market Regulation. Code for concrete admixture application: GB 50119—2013[S]. Beijing: China Architecture & Building Press, 2013 (in Chinese). [36] NGUYEN H, VU T, VO T P, et al. Efficient machine learning models for prediction of concrete strengths[J]. Construction and Building Materials, 2021, 266: 120950. [37] PANDEY D, NIWARIA K, CHOURASIA B. Machine learning algorithms: a review[J]. International Research Journal of Engineering and Technology, 2019, 6(2): 916-922. [38] UNIVERSITY B, Y O F, T A J E, et al. Supervised machine learning algorithms: classification and comparison[J]. International Journal of Computer Trends and Technology, 2017, 48(3): 128-138. [39] YAN H Y, HE Z, GAO C, et al. Investment estimation of prefabricated concrete buildings based on XGBoost machine learning algorithm[J]. Advanced Engineering Informatics, 2022, 54: 101789. [40] EL MAHDI SAFHI A, DABIRI H, SOLIMAN A, et al. Prediction of self-consolidating concrete properties using XGBoost machine learning algorithm: part 1 workability[J]. Construction and Building Materials, 2023, 408: 133560. [41] PHILIP S, MARAKKATH N. Compressive strength prediction and feature analysis for GGBS-based geopolymer concrete using optimized XGBoost and SHAP: a comparative study of optimization algorithms and experimental validation[J]. Journal of Building Engineering, 2025, 108: 112879. [42] YU X R, HU T Y, KHODADADI N, et al. Predictive and experimental assessment of chloride ion permeation in concrete subjected to multifactorial conditions using the XGBoost algorithm[J]. Journal of Building Engineering, 2024, 98: 111041. [43] HAJIBABAEE P, BEHNOOD A, NGO T, et al. Carbonation depth assessment of recycled aggregate concrete: an application of conformal prediction intervals[J]. Expert Systems with Applications, 2025, 268: 126231. |