[1] SINGLA M K, NIJHAWAN P, OBEROI A S. Hydrogen fuel and fuel cell technology for cleaner future: a review[J]. Environmental Science and Pollution Research International, 2021, 28(13): 15607-15626. [2] SAJID A, PERVAIZ E, ALI H, et al. A perspective on development of fuel cell materials: electrodes and electrolyte[J]. International Journal of Energy Research, 2022, 46(6): 6953-6988. [3] TIAN Y F, ABHISHEK N, YANG C C, et al. Progress and potential for symmetrical solid oxide electrolysis cells[J]. Matter, 2022, 5(2): 482-514. [4] MINH N Q. Ceramic fuel cells[J]. Journal of the American Ceramic Society, 1993, 76(3): 563-588. [5] LIU Y, LI H, CAI C, et al. Superior electrochemical performance of a Ce0.8Gd0.2O2-δ/Zr0.8Sc0.2O2-δ thin bilayer-protected gadolinium-doped ceria electrolyte in intermediate-temperature solid oxide fuel cells[J]. ACS Omega, 2023, 8(8): 8011-8018. [6] ZHANG L L, YIN Y R, XU Y S, et al. Tailoring Sr2Fe1.5Mo0.5O6-δ with Sc as a new single-phase cathode for proton-conducting solid oxide fuel cells[J]. Science China Materials, 2022, 65(6): 1485-1494. [7] HANIF M B, GAO J T, SHAHEEN K, et al. Performance evaluation of highly active and novel La0.7Sr0.3Ti0.1Fe0.6Ni0.3O3-δ material both as cathode and anode for intermediate-temperature symmetrical solid oxide fuel cell[J]. Journal of Power Sources, 2020, 472: 228498. [8] ZHENG Y, ZHANG C M, RAN R, et al. A new symmetric solid-oxide fuel cell with La0.8Sr0.2Sc0.2Mn0.8O3-δ perovskite oxide as both the anode and cathode[J]. Acta Materialia, 2009, 57(4): 1165-1175. [9] ZHANG P, GUAN G Q, KHAERUDINI D S, et al. Properties of A-site nonstoichiometry (Pr0.4)xSr0.6Co0.2Fe0.7Nb0.1O3-δ (0.9≤x≤1.1) as symmetrical electrode material for solid oxide fuel cells[J]. Journal of Power Sources, 2014, 248: 163-171. [10] RUIZ-MORALES J C, CANALES-VÁZQUEZ J, PEÑA-MARTÍNEZ J, et al. On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O3-δ as both anode and cathode material with improved microstructure in solid oxide fuel cells[J]. Electrochimica Acta, 2006, 52(1): 278-284. [11] 戴栋梁. 高性能的对称固体氧化物燃料电池电极材料的设计与开发[D]. 镇江: 江苏科技大学, 2022: 15-16 DAI D L. Design and development of high performance electrode materials for symmetric solid oxide fuel cells[D]. Zhenjiang: Jiangu University of Science and Technology, 2022: 15-16 (in Chinese). [12] WEI T, ZHOU X, HU Q, et al. A high power density solid oxide fuel cell based on nano-structured La0.8Sr0.2Cr0.5Fe0.5O3-δ anode[J]. Electrochimica Acta, 2014, 148: 33-38. [13] CAO Z Q, ZHANG Y H, MIAO J P, et al. Titanium-substituted lanthanum strontium ferrite as a novel electrode material for symmetrical solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2015, 40(46): 16572-16577. [14] WANG J J, LYU Q Q, ZHU T L, et al. Self-assembly and low-temperature sintered La0.6Sr0.4CoO3-δ@Gd0.1Ce0.9O2-δ composite cathode with rich electrode/electrolyte interface and enhanced performance in harsh condition[J]. International Journal of Hydrogen Energy, 2024, 58: 1114-1121. [15] SHAHEEN K, SUO H L, SHAH Z, et al. Electrochemical performance of multifuel based nanocomposite for solid oxide fuel cell[J]. Ceramics International, 2020, 46(7): 8832-8838. [16] GUO J P, ZHANG L, XIAN A, et al. Solderability of electrodeposited Fe-Ni alloys with eutectic SnAgCu solder[J]. Journal of Materials Science & Technology, 2007, 23(6): 811-816. [17] LI N, HUANG G W, SHEN X J, et al. Controllable fabrication and magnetic-field assisted alignment of Fe3O4-coated Ag nanowires via a facile co-precipitation method[J]. Journal of Materials Chemistry C, 2013, 1(32): 4879-4884. [18] GUPTA V K, MERGU N, KUMAWAT L K, et al. Selective naked-eye detection of magnesium (II) ions using a coumarin-derived fluorescent probe[J]. Sensors and Actuators B: Chemical, 2015, 207: 216-223. [19] 徐 娜, 孙梦真, 朱腾龙, 等. 一步法合成La0.4Sr0.6Co0.2Fe0.7Nb0.1O3-δ-Ce0.8Gd0.2O2-δ对称电极应用于SOFC性能研究[J]. 稀有金属材料与工程, 2021, 50(3): 995-999. XU N, SUN M Z, ZHU T L, et al. Co-synthesis of La0.4Sr0.6Co0.2Fe0.7Nb0.1O3-δ-Ce0.8Gd0.2O2-δ symmetrical electrode for SOFC performance study[J]. Rare Metal Materials and Engineering, 2021, 50(3): 995-999 (in Chinese). [20] DAI H L, HE S C, CHEN H, et al. Performance enhancement for solid oxide fuel cells using electrolyte surface modification[J]. Journal of Power Sources, 2015, 280: 406-409. [21] CHEN K F, LÜ Z, CHEN X J, et al. Development of LSM-based cathodes for solid oxide fuel cells based on YSZ films[J]. Journal of Power Sources, 2007, 172(2): 742-748. [22] WANG J K, FU L, YANG J M, et al. Cerium and ruthenium co-doped La0.7Sr0.3FeO3-δ as a high-efficiency electrode for symmetrical solid oxide fuel cell[J]. Journal of Rare Earths, 2021, 39(9): 1095-1099. |