[1] GENG P B, ZHENG S S, TANG H, et al. Transition metal sulfides based on graphene for electrochemical energy storage[J]. Advanced Energy Materials, 2018, 8(15): 1703259. [2] CHENG Q, DENG Q, ZHONG W T, et al. Criticality of solid electrolyte interphase in achieving high performance of sodium-ion batteries[J]. Chemical Engineering Journal, 2023, 457: 141097. [3] 方 铮, 曹余良, 胡勇胜, 等. 室温钠离子电池技术经济性分析[J]. 储能科学与技术, 2016, 5(2): 149-158. FANG Z, CAO Y L, HU Y S, et al. Economic analysis for room-temperature sodium-ion battery technologies[J]. Energy Storage Science and Technology, 2016, 5(2): 149-158 (in Chinese). [4] PAVLOVSKII A A, PUSHNITSA K, KOSENKO A, et al. Organic anode materials for lithium-ion batteries: recent progress and challenges[J]. Materials, 2023, 16(1): 177. [5] LI W H, SUN X L, YU Y. Si-, Ge-, Sn-based anode materials for lithium-ion batteries: from structure design to electrochemical performance[J]. Small Methods, 2017, 1(3): 1600037. [6] JIN A H, YU S H, PARK J H, et al. Iron sulfides with dopamine-derived carbon coating as superior performance anodes for sodium-ion batteries[J]. Nano Research, 2019, 12(10): 2609-2613. [7] HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614. [8] 王新玲, 周 娜, 田亚文, 等. SnS2/ZIF-8衍生二维多孔氮掺杂碳纳米片复合材料的锂硫电池性能研究[J]. 无机材料学报, 2023, 38(8): 938-946. WANG X L, ZHOU N, TIAN Y W, et al. SnS2/ZIF-8 derived two-dimensional porous nitrogen-doped carbon nanosheets for lithium-sulfur batteries[J]. Journal of Inorganic Materials, 2023, 38(8): 938-946 (in Chinese). [9] DONG C F, LIANG J W, HE Y Y, et al. NiS1.03 hollow spheres and cages as superhigh rate capacity and stable anode materials for half/full sodium-ion batteries[J]. ACS Nano, 2018, 12(8): 8277-8287. [10] LIN Y M, QIU Z Z, LI D Z, et al. NiS2@CoS2 nanocrystals encapsulated in N-doped carbon nanocubes for high performance lithium/sodium ion batteries[J]. Energy Storage Materials, 2018, 11: 67-74. [11] BI R, ZENG C, HUANG H W, et al. Metal-organic frameworks derived hollow NiS2 spheres encased in graphene layers for enhanced sodium-ion storage[J]. Journal of Materials Chemistry A, 2018, 6(29): 14077-14082. [12] 任小吉. 过渡金属钼酸盐的制备及其电化学性能的研究[D]. 武汉: 武汉理工大学, 2018. REN X J. Preparation and electrochemical properties of transition metal molybdate[D]. Wuhan: Wuhan University of Technology, 2018 (in Chinese). [13] 张弋林, 吴之传, 谢嘉欣, 等. Ni3S2/偕胺肟化聚丙烯腈复合材料的制备及其析氢性能研究[J]. 高分子通报, 2023, 36(10): 1347-1355. ZHANG Y L, WU Z C, XIE J X, et al. Preparation of Ni3S2/amidoximated polyacrylonitrile composites and its hydrogen evolution properties[J]. Polymer Bulletin, 2023, 36(10): 1347-1355 (in Chinese). [14] 贺战文, 王明智. 机械合金化对Fe-Cu粉末烧结性能的影响[J]. 粉末冶金工业, 2007, 17(4): 5-9. HE Z W, WANG M Z. Effect of mechanical alloying on sintering characteristics of Fe-Cu compound powder[J]. Powder Metallurgy Industry, 2007, 17(4): 5-9 (in Chinese). [15] 王志豪, 范金成, 崔柯昕, 等. 三维Ni3S2@NiCo-LDH纳米复合材料合成及其电氧化尿素制氢性能研究[J]. 现代化工, 2024, 44(4): 156-163. WANG Z H, FAN J C, CUI K X, et al. Synthesis of three-dimensional Ni3S2@NiCo-LDH nanocomposite and study on its properties in hydrogen production from electro-oxidation of urea[J]. Modern Chemical Industry, 2024, 44(4): 156-163 (in Chinese). [16] 郑佳红, 白 昕, 申嘉钧. 1D/2D MnS/Ni3S2异质结构的制备及其电化学性能[J]. 硅酸盐学报, 2023, 51(8): 2027-2036. ZHENG J H, BAI X, SHEN J J. Preparation and electrochemical properties of 1D/2D MnS/Ni3S2 heterostructures[J]. Journal of the Chinese Ceramic Society, 2023, 51(8): 2027-2036 (in Chinese). [17] 赵志凤, 苏占华, 林双燕. Ni3S2/NF电极的制备及其电化学性能研究[J]. 广东石油化工学院学报, 2025, 35(1): 40-44. ZHAO Z F, SU Z H, LIN S Y. Preparation and electrochemical performance of Ni3S2/NF electrode[J]. Journal of Guangdong University of Petrochemical Technology, 2025, 35(1): 40-44 (in Chinese). [18] 董 伟, 李 粟, 赵美娜, 等. 沥青多孔炭@C3N4复合载硫体制备及锂硫电池电化学性能[J]. 硅酸盐学报, 2024, 52(1): 30-45. DONG W, LI S, ZHAO M N, et al. Pitch porous Carbon@C3N4 composite sulfur carrier and electrochemical properties of lithium-sulfur batteries[J]. Journal of the Chinese Ceramic Society, 2024, 52(1): 30-45 (in Chinese). [19] 王 晶, 徐守冬, 卢中华, 等. 钠离子电池中空结构CoSe2/C负极材料的制备及储钠性能研究[J]. 无机材料学报, 2022, 37(12): 1344-1353. WANG J, XU S D, LU Z H, et al. Hollow-structured CoSe2/C anode materials: preparation and sodium storage properties for sodium-ion batteries[J]. Journal of Inorganic Materials, 2022, 37(12): 1344-1353 (in Chinese). [20] 唐 俊. 泡沫金属基锂、钠离子电池负极材料研究[D]. 宜昌: 三峡大学, 2018. TANG J. Study on anode materials of foamed metal-based lithium and sodium ion batteries[D]. Yichang: China Three Gorges University, 2018 (in Chinese). [21] 张亚婷, 李可可, 任绍昭, 等. 煤基石墨烯/Fe2O3自支撑电极的制备及其储锂性能[J]. 煤炭学报, 2021, 46(4): 1173-1181. ZHANG Y T, LI K K, REN S Z, et al. Coal-based graphene/Fe2O3 nanostructures grow on nickel foams as an enhanced free-standing anode for lithium-ion batteries[J]. Journal of China Coal Society, 2021, 46(4): 1173-1181 (in Chinese). [22] 管亚玉. 镍/钴基复合材料的可控制备及其电解水性能研究[D]. 太原: 太原理工大学, 2020. GUAN Y Y. Controllable preparation of nickel/cobalt-based composites and their electrolytic water properties[D]. Taiyuan: Taiyuan University of Technology, 2020 (in Chinese). [23] 陈 琪. 硒化钴基负极材料的制备及其锂离子电池性能的研究[D]. 上海: 东华大学, 2022. CHEN Q. Preparation of cobalt selenide-based anode materials and study on the performance of lithium ion batteries[D]. Shanghai: Donghua University, 2022 (in Chinese). [24] YU S H, JIN A H, HUANG X, et al. SnS/C nanocomposites for high-performance sodium ion battery anodes[J]. RSC Advances, 2018, 8(42): 23847-23853. [25] 李 静, 陶华超, 杨学林. 高性能钠离子电池负极材料FexMo1-xS2[J]. 硅酸盐学报, 2022, 50(1): 204-211. LI J, TAO H C, YANG X L. FexMo1-xS2 as anode for high-performance sodium ion batteries[J]. Journal of the Chinese Ceramic Society, 2022, 50(1): 204-211 (in Chinese). [26] 宋为涛. 过渡金属硫化物/碳基复合材料的制备及其储钠性能研究[D]. 太原: 太原理工大学, 2019. SONG W T. Preparation and sodium storage properties of transition metal sulfide/carbon-based composites[D]. Taiyuan: Taiyuan University of Technology, 2019 (in Chinese). [27] 孙阳硕. 镍基化合物/MoS2核壳纳米结构的制备及其电催化析氢性能研究[D]. 西安: 长安大学, 2019. SUN Y S. Preparation of nickel-based compound/MoS2 core-shell nanostructure and its electrocatalytic hydrogen evolution performance[D]. Xi'an: Chang'an University, 2019 (in Chinese). [28] 朱传晖, 郭 磊, 胡 涛, 等. 液态合金/二硫化钼自修复负极材料的制备及其电化学性能[J]. 硅酸盐学报, 2024, 52(6): 2024-2031. ZHU C H, GUO L, HU T, et al. Preparation and eletrochemical study of liquid metal/MoS2 self-repairing anode materials for lithium-ion batteries[J]. Journal of the Chinese Ceramic Society, 2024, 52(6): 2024-2031 (in Chinese). [29] 张 猛, 李 进, 苏少鹏, 等. 高性能硅基复合锂离子电池负极制备及电化学性能[J]. 硅酸盐学报, 2022, 50(10): 2591-2598. ZHANG M, LI J, SU S P, et al. Preparation and electrochemical performance of anode for high-performance silicon-based composite lithium-ion battery[J]. Journal of the Chinese Ceramic Society, 2022, 50(10): 2591-2598 (in Chinese). |