[1] MANTHIRAM A, GOODENOUGH J B. Layered lithium cobalt oxide cathodes[J]. Nature Energy, 2021, 6(3): 323. [2] WANG X H, LU J Y, WU Y H, et al. Building stable anodes for high-rate Na-metal batteries[J]. Advanced Materials, 2024, 36(16): 2311256. [3] WANG X H, WU Y H, ZHOU Y H, et al. Interface engineering with an organic aluminum additive for high-rate sodium metal batteries[J]. Advanced Functional Materials, 2025, 35(4): 2414041. [4] HU W, LI X Y, HUANG J B, et al. NASICON Li1.3Al0.3Ti1.7(PO4)3 electrolyte coating enables stable cycling of Li-rich manganese-based cathode[J]. Tungsten, 2024: 1-7. [5] JIN Y, XU Y B, LE P M L, et al. Highly reversible sodium ion batteries enabled by stable electrolyte-electrode interphases[J]. ACS Energy Letters, 2020, 5(10): 3212-3220. [6] LI T, XIONG L Y. Carbon-coated sodium vanadium phosphate for high-performance sodium-ion batteries[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2022, 30(11): 1142-1147. [7] HIRONO T, USUI H, DOMI Y, et al. Effect of Sn addition on anode properties of SiOx in sodium-ion batteries[J]. Electrochemistry, 2023, 91(1): 017001. [8] LIU Q, ZHAO X H, YANG Q, et al. The progress in the electrolytes for solid state sodium-ion battery[J]. Advanced Materials Technologies, 2023, 8(7): 2200822. [9] LI C, LI R, LIU K N, et al. NaSICON: a promising solid electrolyte for solid-state sodium batteries[J]. Interdisciplinary Materials, 2022, 1(3): 396-416. [10] KOU Z Y, MIAO C, WANG Z Y, et al. Novel NASICON-type structural Li1.3Al0.3Ti1.7SixP5(3-0.8x)O12 solid electrolytes with improved ionic conductivity for lithium ion batteries[J]. Solid State Ionics, 2019, 343: 115090. [11] SHEN L, YANG J, LIU G, et al. High ionic conductivity and dendrite-resistant NASICON solid electrolyte for all-solid-state sodium batteries[J]. Materials Today Energy, 2021, 20: 100691. [12] ZHAO S, CHE H, CHEN S, et al. Research progress on the solid electrolyte of solid-state sodium-ion batteries[J]. Electrochemical Energy Reviews, 2024, 7(1): 3. [13] FUENTES R O, FIGUEIREDO F M, MARQUES F M B, et al. Influence of microstructure on the electrical properties of NASICON materials[J]. Solid State Ionics, 2001, 140(1/2): 173-179. [14] CHEN D, LUO F, ZHOU W C, et al. Influence of Nb5+, Ti4+, Y3+ and Zn2+ doped Na3Zr2Si2PO12 solid electrolyte on its conductivity[J]. Journal of Alloys and Compounds, 2018, 757: 348-355. [15] JOLLEY A G, TAYLOR D D, SCHREIBER N J, et al. Structural investigation of monoclinic-rhombohedral phase transition in Na3Zr2Si2PO12 and doped NASICON[J]. Journal of the American Ceramic Society, 2015, 98(9): 2902-2907. [16] ZHANG Q, LIANG F, OU T, et al. Effect on ionic conductivity of Na3+xZr2-xMxSi2PO12 (M=Y, La) by doping rare-earth elements[J]. IOP Conference Series: Materials Science and Engineering, 2018, 423: 012122. [17] RUAN Y L, SONG S D, LIU J J, et al. Improved structural stability and ionic conductivity of Na3Zr2Si2PO12 solid electrolyte by rare earth metal substitutions[J]. Ceramics International, 2017, 43(10): 7810-7815. [18] WANG X X, LIU Z H, TANG Y H, et al. Low temperature and rapid microwave sintering of Na3Zr2Si2PO12 solid electrolytes for Na-Ion batteries[J]. Journal of Power Sources, 2021, 481: 228924. |