[1] 孙 静, 刘月秋, 赵浩哲, 等. 钙钛矿太阳能电池薄膜的研究与进展[J]. 化工设计通讯, 2025, 51(3): 133-135. SUN J, LIU Y Q, ZHAO H Z, et al. Research and progress of perovskite solar cell thin films[J]. Chemical Engineering Design Communications, 2025, 51(3): 133-135 (in Chinese). [2] ZHANG L X, MEI L Y, WANG K Y, et al. Advances in the application of perovskite materials[J]. Nano-Micro Letters, 2023, 15(1): 177. [3] DONG H, RAN C X, GAO W Y, et al. Metal halide perovskite for next-generation optoelectronics: progresses and prospects[J]. eLight, 2023, 3(1): 3. [4] 李白茹, 方志敏, 王爱丽, 等. 钙钛矿太阳能电池研究进展[J]. 化工进展, 2025, 44(5): 2598-2624. LI B R, FANG Z M, WANG A L, et al. Research progress in perovskite solar cells[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2598-2624 (in Chinese). [5] 刘丽丹, 杜悦溶, 钱春苹, 等. 高效稳定钙钛矿太阳电池的发展与展望[J]. 内蒙古石油化工, 2024, 50(10): 30-35. LIU L D, DU Y R, QIAN C P, et al. Development and prospects on the efficient and stable perovskite solar cells[J]. Inner Mongolia Petrochemical Industry, 2024, 50(10): 30-35 (in Chinese). [6] 蔡馨燕. 金属卤化物钙钛矿材料的制备工艺研究进展[J]. 鲁东大学学报(自然科学版), 2024, 40(4): 343-353. CAI X Y. Research progress on the fabrication processes of metal halide perovskite materials[J]. Journal of Ludong University (Natural Science Edition), 2024, 40(4): 343-353 (in Chinese). [7] 岳雨萌, 邓大伟. 铅卤钙钛矿稳定性增强研究进展[J]. 山东化工, 2023, 52(17): 71-73. YUE Y M, DENG D W. Research progress in enhancing stability of lead halide perovskites[J]. Shandong Chemical Industry, 2023, 52(17): 71-73 (in Chinese). [8] 戴中华, 谢景龙, 刘卫国, 等. 钙钛矿太阳能电池稳定性的研究进展[J]. 稀有金属材料与工程, 2020, 49(1): 377-384. DAI Z H, XIE J L, LIU W G, et al. Research progress in stability of perovskite solar cells[J]. Rare Metal Materials and Engineering, 2020, 49(1): 377-384 (in Chinese). [9] CHOWDHURY T A, BIN ZAFAR M A, SAJJAD-UL ISLAM M, et al. Stability of perovskite solar cells: issues and prospects[J]. RSC Advances, 2023, 13(3): 1787-1810. [10] 李宁宁, 曹兴航, 谈星星. 高效稳定的钙钛矿太阳能电池中的添加剂工程[J]. 化工技术与开发, 2023, 52(3): 60-63. LI N N, CAO X H, TAN X X. Additive engineering of efficient and stable perovskite solar cell[J]. Technology & Development of Chemical Industry, 2023, 52(3): 60-63 (in Chinese). [11] 张义佳, 吴雅罕. 吡啶添加剂对钙钛矿太阳能电池性能影响的研究[J]. 内蒙古工业大学学报(自然科学版), 2024, 43(6): 548-553. ZHANG Y J, WU Y H. Effect of pyridine additives on the performance of perovskite solar cells[J]. Journal of Inner Mongolia University of Technology (Natural Science Edition), 2024, 43(6): 548-553 (in Chinese). [12] 孟凡宁, 王 芳, 程 龙, 等. 对氨基苯甲酸调控CsPbIBr2钙钛矿的结晶及其光伏性能[J/OL]. 物理学报: 1-18 (2025-05-06) [2025-05-16]. http://kns.cnki.net/kcms/detail/11.1958.O4.20250430.1954.012.html. MENG F N, WANG F, CHENG L, et al. Regulation of CsPbIBr2 perovskite crystallization and its photovoltaic properties by p-aminobenzoic acid[J/OL]. Acta Physica Sinica: 1-18 (2025-05-06) [2025-05-16]. http://kns.cnki.net/kcms/detail/11.1958.O4.20250430.1954.012.html (in Chinese). [13] 郑松志, 李 浩, 王则远, 等. 正丁醇添加剂制备CsPbBr3钙钛矿太阳能电池[J]. 科学通报, 2024, 69(19): 2814-2826. ZHENG S Z, LI H, WANG Z Y, et al. Fabrication of CsPbBr3 perovskite solar cells with n-butanol additives[J]. Chinese Science Bulletin, 2024, 69(19): 2814-2826 (in Chinese). [14] 加雪峰, 阮 妙, 叶林峰, 等. 咪唑基离子液修饰钙钛矿太阳能电池及其性能研究[J]. 人工晶体学报, 2025, 54(5): 864-872. JIA X F, RUAN M, YE L F, et al. Imidazolium ionic liquid-modified perovskite solar cells and its performance characteristics[J]. Journal of Synthetic Crystals, 2025, 54(5): 864-872 (in Chinese). [15] MOHAMMED M K A, JABIR M S, ABDULZAHRAA H G, et al. Introduction of cadmium chloride additive to improve the performance and stability of perovskite solar cells[J]. RSC Advances, 2022, 12(32): 20461-20470. [16] KALANTARI N, DELIBAŞ N, NIAEI A. Unveiling the potential of additives in optimizing halide perovskite solar cells performance and reliability[J]. Materials Today Sustainability, 2024, 28: 101011. [17] WANG Q W, QIU P, LUO X Y, et al. Mutually tuned dual additive engineering synergistically enhances the photovoltaic performance of tin-based perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2023, 15(38): 45064-45075. [18] WANG L, YU F Y, YANG S Z, et al. A multifunctional p-type additive for enhanced efficiency in perovskite solar cells[J]. Sustainable Energy & Fuels, 2025, 9(6): 1520-1524. [19] REN N Y, WANG P Y, JIANG J K, et al. Multifunctional additive CdAc2 for efficient perovskite-based solar cells[J]. Advanced Materials, 2023, 35(32): 2211806. [20] LI M H, ZHOU J J, TAN L G, et al. Multifunctional succinate additive for flexible perovskite solar cells with more than 23% power-conversion efficiency[J]. The Innovation, 2022, 3(6): 100310. [21] MIN H, LEE D Y, KIM J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes[J]. Nature, 2021, 598(7881): 444-450. [22] WANG Z Y, YUAN B B, GAO Y H, et al. Spiro-OMeTAD Anchoring perovskite for gradual homojunction in stable perovskite solar cells[J]. Solid-State Electronics, 2024, 221: 109003. [23] GUO Q Y, DOU J, MEI Y H, et al. Toward α-phase stabilization of formamidinium lead iodide perovskites with dual-trivalent metal regulation[J]. Chemical Engineering Journal, 2025, 504: 158875. [24] SONG Z N, WATTHAGE S C, PHILLIPS A B, et al. Impact of processing temperature and composition on the formation of methylammonium lead iodide perovskites[J]. Chemistry of Materials, 2015, 27(13): 4612-4619. [25] SUN J Y, LI R D, GUI Y, et al. Mechanistic insights and optimization strategies for perovskite single-crystal thin film growth[J]. Chemical Science, 2025, 16(15): 6188-6202. [26] ROOSE B, DEY K, CHIANG Y H, et al. Critical assessment of the use of excess lead iodide in lead halide perovskite solar cells[J]. The Journal of Physical Chemistry Letters, 2020, 11(16): 6505-6512. [27] DU S X, HUANG H, LAN Z N, et al. Inhibiting perovskite decomposition by a creeper-inspired strategy enables efficient and stable perovskite solar cells[J]. Nature Communications, 2024, 15(1): 5223. [28] LIN L Y, JONES T W, YANG T C, et al. Hydrogen bonding in perovskite solar cells[J]. Matter, 2024, 7(1): 38-58. [29] WANG T Y, HAO Y Y, ZHU M Z, et al. Hydrogen bonds in perovskite for efficient and stable photovoltaic[J]. Chinese Journal of Chemistry, 2024, 42(11): 1284-1306. [30] XIE Y S, WU B, GAO D Q. Recent advances in ionic molecules applied in perovskite solar cells[J]. Journal of Materials Chemistry C, 2024, 12(18): 6374-6394. [31] XIONG S B, TIAN F Y, WANG F, et al. Reducing nonradiative recombination for highly efficient inverted perovskite solar cells via a synergistic bimolecular interface[J]. Nature Communications, 2024, 15(1): 5607. [32] AALBERS G J W, REMMERSWAAL W H M, VAN DEN HEUVEL R H C, et al. Functionalized substrates for reduced nonradiative recombination in metal-halide perovskites[J]. The Journal of Physical Chemistry Letters, 2025, 16(1): 372-377. [33] AUNG S K K, VIJAYAN A, KARIMIPOUR M, et al. Reduced hysteresis and enhanced air stability of low-temperature processed carbon-based perovskite solar cells by surface modification[J]. Electrochimica Acta, 2023, 443: 141935. |