[1] 黄法礼, 李化建, 谢永江, 等. 新拌混凝土工作性能与流变参数相关性研究进展[J]. 混凝土, 2015(10): 119-123+127. HUANG F L, LI H J, XIE Y J, et al. Research progress on the correlation between workability and rheological parameters of fresh concrete[J]. Concrete, 2015(10): 119-123+127 (in Chinese). [2] 张志超. 骨料粒径对自密实混凝土流变性、工作性和静态稳定性影响研究[J]. 硅酸盐通报, 2020, 39(7): 2139-2144. ZHANG Z C. Influence of coarse aggregate size on rheology, workability and static stability of self-compacting concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(7): 2139-2144 (in Chinese). [3] 蔡渝新, 刘清风. 混凝土拌合物稳定性及其对工程结构耐久性影响的研究进展[J]. 西安建筑科技大学学报(自然科学版), 2023, 55(4): 492-503. CAI Y X, LIU Q F. Research progress on the stability of concrete mixtures and its influence on the durability of engineering structures[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2023, 55(4): 492-503 (in Chinese). [4] 黄大能. 外加剂、流变学与高性能混凝土[J]. 混凝土与水泥制品, 2000(2): 3-4. HUANG D N. Admixtures, rheology and high performance concrete[J]. Chinal Concrete and Cement Products, 2000(2): 3-4 (in Chinese). [5] KOURA B O, HOSSEINPOOR M, YAHIA A. Coupled effect of fine mortar and granular skeleton characteristics on dynamic stability of self-consolidating concrete as a diphasic material[J]. Construction and Building Materials, 2020, 263: 120131. [6] YAN W S, CUI W, QI L. Effect of aggregate gradation and mortar rheology on static segregation of self-compacting concrete[J]. Construction and Building Materials, 2020, 259: 119816. [7] 蒋 健, 李传习, 邓 帅, 等. 含粗骨料超高性能混凝土静态稳定性研究[J]. 硅酸盐通报, 2024, 43(7): 2441-2450. JIANG J, LI C X, DENG S, et al. Static stability of ultra-high performance concrete containing coarse aggregate[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(7): 2441-2450 (in Chinese). [8] GHOURCHIAN S, WYRZYKOWSKI M, LURA P, et al. An investigation on the use of zeolite aggregates for internal curing of concrete[J]. Construction and Building Materials, 2013, 40: 135-144. [9] DE LA VARGA I, CASTRO J, BENTZ D, et al. Application of internal curing for mixtures containing high volumes of fly ash[J]. Cement and Concrete Composites, 2012, 34(9): 1001-1008. [10] ZHUTOVSKY S, KOVLER K. Effect of internal curing on durability-related properties of high performance concrete[J]. Cement and Concrete Research, 2012, 42(1): 20-26. [11] 马昆林, 冯 金, 龙广成, 等. 流变参数对自密实混凝土等效砂浆静态稳定性的影响[J]. 硅酸盐学报, 2017, 45(2): 196-205. MA K L, FENG J, LONG G C, et al. Influence of rheological parameters on static stability of self-compacting concrete equivalent mortar[J]. Journal of the Chinese Ceramic Society, 2017, 45(2): 196-205 (in Chinese). [12] 廖国胜, 丁 正, 刘发民, 等. 基于砂浆流变性能的自密实混凝土制备方法研究[J]. 混凝土, 2024(10): 116-120. LIAO G S, DING Z, LIU F M, et al. Research on preparation method of self-compacting concrete based on rheological properties of mortar[J]. Concrete, 2024(10): 116-120 (in Chinese). [13] CUSSON D, HOOGEVEEN T. Internal curing of high-performance concrete with pre-soaked fine lightweight aggregate for prevention of autogenous shrinkage cracking[J]. Cement and Concrete Research, 2008, 38(6): 757-765. [14] 丁 倩, 黄耀英, 徐小枫, 等. 基于不同测试方法的密封养护水泥砂浆孔隙率和饱水度变化规律[J]. 硅酸盐通报, 2021, 40(11): 3584-3592+3600. DING Q, HUANG Y Y, XU X F, et al. Change rule of porosity and saturation of cement mortar under sealed curing condition based on different measured methods[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(11): 3584-3592+3600 (in Chinese). [15] 国家市场监督管理总局, 国家标准化管理委员会. 预拌砂浆: GB/T 25181—2019[S]. 北京: 中国标准出版社, 2019. State Administration for Market Regulation, National Standardization Administration. Ready-mixed mortar: GB/T 25181—2019[S]. Beijing: Standards Press of China, 2019 (in Chinese). [16] 赖广兴. 坍落度筒法测试混凝土表观密度的影响研究[J]. 广东建材, 2024, 40(4): 50-53. LAI G X. Study on the influence of slump cone method on concrete apparent density[J]. Guangdong Building Materials, 2024, 40(4): 50-53 (in Chinese). [17] 张宇靖, 朱吉鹏. 基于L型流动仪的水泥砂浆流变参数预测[J]. 科技和产业, 2023, 23(15): 264-270. ZHANG Y J, ZHU J P. Prediction of rheological parameters of cement mortar based on L-box[J]. Science Technology and Industry, 2023, 23(15): 264-270 (in Chinese). [18] 中华人民共和国水利部. 水泥胶砂流动度测定仪校验方法: SL 123—2012[S]. 北京: 中国水利水电出版社, 2012. Ministry of Water Resources of the People's Republic of China. Calibration methods for fluidity tester of cement mortar: SL 123—2012[S]. Beijing: China Water & Power Press, 2012 (in Chinese). [19] 李京军, 谭德林, 牛建刚. 砂浆流变参数的Marsh筒法和微坍法测定[J]. 材料导报, 2022, 36(9): 102-108. LI J J, TAN D L, NIU J G. Determination of rheological parameters of mortar by using marsh cone method and mini-slump method[J]. Materials Reports, 2022, 36(9): 102-108 (in Chinese). [20] 赵东三, 徐正中, 高 旭, 等. 基于动态机器学习的水泥胶砂性能预测研究[J]. 混凝土, 2024(3): 147-152+170. ZHAO D S, XU Z Z, GAO X, et al. Research on performance prediction of cement mortar based on dynamic machine learning[J]. Concrete, 2024(3): 147-152+170 (in Chinese). [21] XU G L, WU H, CAI J W, et al. Dynamic stability evaluation of fresh concrete with the declined table test[J]. Materials and Structures, 2023, 57(1): 5. [22] XU G L, WU H, CAI J W, et al. Influence of mortar thickness on the dynamic segregation of high-fluidity concrete[J]. Construction and Building Materials, 2024, 438: 137153. [23] 李明海, 许鸽龙, 张 正, 等. 抛填骨料工艺对混凝土抗压强度影响的机理分析[J]. 武汉理工大学学报, 2020, 42(11): 26-30. LI M H, XU G L, ZHANG Z, et al. Mechanism analysis of the effect of distributing-filling aggregate process on the compressive strength of concrete[J]. Journal of Wuhan University of Technology, 2020, 42(11): 26-30 (in Chinese). [24] LI L G, KWAN A K H. Concrete mix design based on water film thickness and paste film thickness[J]. Cement and Concrete Composites, 2013, 39: 33-42. [25] LI L G, KWAN A K H. Mortar design based on water film thickness[J]. Construction and Building Materials, 2011, 25(5): 2381-2390. [26] 赵昕南. 高效减水剂最佳掺量的确定—理论及测试方法[D]. 北京: 中国建筑材料科学研究院, 2001. ZHAO X N. Determination of optimum dosage of high efficient water reducing agent-theory and test method[D]. Beijing: China Building Materials Academy, 2001 (in Chinese). [27] 张朝阳, 喻建伟, 孔祥明, 等. 化学外加剂对砂浆流变性能的影响[J]. 硅酸盐学报, 2020, 48(5): 622-631. ZHANG C Y, YU J W, KONG X M, et al. Effect of chemical admixtures on rheological properties of mortars[J]. Journal of the Chinese Ceramic Society, 2020, 48(5): 622-631 (in Chinese). [28] ROUSSEL N, STEFANI C, LEROY R. From mini-cone test to Abrams cone test: measurement of cement-based materials yield stress using slump tests[J]. Cement and Concrete Research, 2005, 35(5): 817-822. [29] 国家市场监督管理总局, 国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法): GB/T 17671—2021[S]. 北京: 中国标准出版社, 2021. State Administration for Market Regulation, National Standardization Administration. Test method of cement mortar strength (ISO method): GB/T 17671—2021[S]. Beijing: Standards Press of China, 2021 (in Chinese). [30] BOUVET A, GHORBEL E, BENNACER R. The mini-conical slump flow test: analysis and numerical study[J]. Cement and Concrete Research, 2010, 40(10): 1517-1523. [31] 国家市场监督管理总局, 国家标准化管理委员会. 水泥标准稠度用水量、凝结时间与安定性检验方法: GB/T 1346—2024[S]. 北京: 中国标准出版社, 2024. State Administration for Market Regulation, National Standardization Administration. Test methods for water requirement of standard consistency, setting time and soundness of the Portland cement: GB/T 1346—2024[S]. Beijing: Standards Press of China, 2024 (in Chinese). [32] KWAN A K H, LI L G. Combined effects of water film, paste film and mortar film thicknesses on fresh properties of concrete[J]. Construction and Building Materials, 2014, 50: 598-608. [33] 许 潇. 特细砂对自密实水泥砂浆流变性的影响[D]. 长沙: 湖南大学, 2021. XU X. Effect of ultra-fine sand on rheological properties of self-compacting cement mortar[D]. Changsha: Hunan University, 2021 (in Chinese). [34] SHEN W G, WU M M, ZHANG B L, et al. Coarse aggregate effectiveness in concrete: quantitative models study on paste thickness, mortar thickness and compressive strength[J]. Construction and Building Materials, 2021, 289: 123171. [35] 杨立民. 减水剂和引气剂掺量对抹灰砂浆性能影响研究[J]. 建材技术与应用, 2024(6): 47-50. YANG L M. Study on the effect of water reducing agent and air entraining agent on the performance of plasting mortar[J]. Research & Application of Building Materials, 2024(6): 47-50 (in Chinese). [36] 何 真, 蒋 睿, 李 杨. 砂浆静-动态流变的黏弹塑性特征[J]. 水利学报, 2018, 49(5): 561-569. HE Z, JIANG R, LI Y. Viscoelasticity characteristics of mortars in static and dynamic rheological test[J]. Journal of Hydraulic Engineering, 2018, 49(5): 561-569 (in Chinese). [37] 胡晓波, 吕智英, 曾 涛. PAS与增稠保水剂复掺对水泥净浆性能的影响[J]. 铁道科学与工程学报, 2006, 3(1): 60-64. HU X B, LÜ Z Y, ZENG T. Influence of the compound of aminosulfonic acid-based superplasticzer and water-retentive and thickening admixture on cement paste properties[J]. Journal of Railway Science and Engineering, 2006, 3(1): 60-64 (in Chinese). [38] ABEBE Y A, LOHAUS L. Rheological characterization of the structural breakdown process to analyze the stability of flowable mortars under vibration[J]. Construction and Building Materials, 2017, 131: 517-525. [39] DOMONE P. Mortar tests for self-consolidating concrete[J]. Concrete International, 2006(4): 28. [40] KIM J H, YIM H J, KWON S H. Quantitative measurement of the external and internal bleeding of conventional concrete and SCC[J]. Cement and Concrete Composites, 2014, 54: 34-39. |