[1] 李 坤, 刘 娥, 卢庆阳. 钼矿尾矿制备低导热系数保温陶瓷板[J]. 硅酸盐学报, 2020, 48(3): 416-422. LI K, LIU E, LU Q Y. Preparation of low thermal conductivity insulating ceramic plate from molybdenum mine tailings[J]. Journal of the Chinese Ceramic Society, 2020, 48(3): 416-422 (in Chinese). [2] 丁 祥, 潘凯凯, 彭 波, 等. 熔融发泡法制备赤泥-高铝粉煤灰基多孔陶瓷[J]. 硅酸盐学报, 2022, 50(3): 713-722. DING X, PAN K K, PENG B, et al. Preparation of porous ceramics with red mud and high-aluminum fly ash by melting foaming method[J]. Journal of the Chinese Ceramic Society, 2022, 50(3): 713-722 (in Chinese). [3] 姜葱葱, 董祎然, 黄世峰, 等. 基于原位发泡工艺的固废基发泡陶瓷研究进展[J]. 硅酸盐学报, 2022, 50(9): 2510-2526. JIANG C C, DONG Y R, HUANG S F, et al. Research progress on solid waste-based foamed ceramics based on in situ foaming process[J]. Journal of the Chinese Ceramic Society, 2022, 50(9): 2510-2526 (in Chinese). [4] 李 林, 姜 涛, 陈 超, 等. 攀西钒钛磁铁矿尾矿制备储水泡沫陶瓷的研究[J]. 矿产综合利用, 2020(6): 7-13+6. LI L, JIANG T, CHEN C, et al. Study on preparation of water-retaining foam ceramics from vanadium-titanium magnetite tailings[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 7-13+6 (in Chinese). [5] YU G H, GAO W, YAO Y B, et al. Recycling of silicomanganese slag and fly ash for preparation of environment-friendly foamed ceramics[J]. Materials, 2023, 16(20): 6724. [6] CHEN X J, LU A X, QU G. Preparation and characterization of foam ceramics from red mud and fly ash using sodium silicate as foaming agent[J]. Ceramics International, 2013, 39(2): 1923-1929. [7] ZHOU H L, FENG K Q, LIU Y F, et al. Preparation and characterization of foamed glass-ceramics based on waste glass and slow-cooled high-titanium blast furnace slag using borax as a flux agent[J]. Journal of Non-Crystalline Solids, 2022, 590: 121703. [8] CHEN C H, FENG K Q, ZHOU Y, et al. Effect of sintering temperature on the microstructure and properties of foamed glass-ceramics prepared from high-titanium blast furnace slag and waste glass[J]. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(8): 931-936. [9] DONG X W, HAN F L, YU N, et al. Preparation and characterization of novel spontaneous foam ceramics based on all-solid waste[J]. Journal of Alloys and Compounds, 2024, 976: 173135. [10] XI C P, ZHENG F, XU J H, et al. Preparation of glass-ceramic foams using extracted titanium tailing and glass waste as raw materials[J]. Construction and Building Materials, 2018, 190: 896-909. [11] WANG S X, WANG H, CHEN Z W, et al. Fabrication and characterization of porous cordierite ceramics prepared from fly ash and natural minerals[J]. Ceramics International, 2019, 45(15): 18306-18314. [12] ZENG L, SUN H J, PENG T J, et al. Preparation of porous glass-ceramics from coal fly ash and asbestos tailings by high-temperature pore-forming[J]. Waste Management, 2020, 106: 184-192. [13] HUI T, SUN H J, PENG T J. Preparation and characterization of cordierite-based ceramic foams with permeable property from asbestos tailings and coal fly ash[J]. Journal of Alloys and Compounds, 2021, 885: 160967. [14] ZHENG W M, SUN H J, PENG T J, et al. Novel preparation of foamed glass-ceramics from asbestos tailings and waste glass by self-expansion in high temperature[J]. Journal of Non-Crystalline Solids, 2020, 529: 119767. [15] LI Y, CHENG X D, GONG L L, et al. Fabrication and characterization of anorthite foam ceramics having low thermal conductivity[J]. Journal of the European Ceramic Society, 2015, 35(1): 267-275. [16] ZHANG R F, FENG J J, CHENG X D, et al. Porous thermal insulation materials derived from fly ash using a foaming and slip casting method[J]. Energy and Buildings, 2014, 81: 262-267. [17] 刘承印, 高中辉, 王志浩, 等. 沥青废料基泡沫陶瓷的制备及性能[J]. 济南大学学报(自然科学版), 2024, 38(5): 650-654. LIU C Y, GAO Z H, WANG Z H, et al. Preparation and property of asphalt waste-based foam ceramics[J]. Journal of University of Jinan (Science and Technology), 2024, 38(5): 650-654 (in Chinese). [18] ZHANG M J, HE M L, GU H Z, et al. Influence of pore distribution on the equivalent thermal conductivity of low porosity ceramic closed-cell foams[J]. Ceramics International, 2018, 44(16): 19319-19329. [19] JANA D C, SUNDARARAJAN G, CHATTOPADHYAY K. Effect of porosity on structure, Young's modulus, and thermal conductivity of SiC foams by direct foaming and gelcasting[J]. Journal of the American Ceramic Society, 2017, 100(1): 312-322. [20] ZHANG L X, LIANG L S, LI Y, et al. Preparation of lightweight foam glass-ceramics from copper slag tailings: secondary aluminum slag as pore-forming agent[J]. Ceramics International, 2024, 50(21): 43699-43709. [21] TALLON C, CHUANUWATANAKUL C, DUNSTAN D E, et al. Mechanical strength and damage tolerance of highly porous alumina ceramics produced from sintered particle stabilized foams[J]. Ceramics International, 2016, 42(7): 8478-8487. [22] EOM J H, SEO Y K, KIM Y W. Mechanical and thermal properties of pressureless sintered silicon carbide ceramics with alumina-yttria-calcia[J]. Journal of the American Ceramic Society, 2016, 99(5): 1735-1741. [23] LIU Y, CHEN H F, ZHANG H W, et al. Heat transfer performance of lotus-type porous copper heat sink with liquid GaInSn coolant[J]. International Journal of Heat and Mass Transfer, 2015, 80: 605-613. [24] ZHU M G, JI R, LI Z M, et al. Preparation of glass ceramic foams for thermal insulation applications from coal fly ash and waste glass[J]. Construction and Building Materials, 2016, 112: 398-405. [25] CHEN S Z, LUO L M, SUN H J, et al. Effect and mechanism of Fe2O3 decomposition in the preparation of foaming ceramics from industrial solid waste[J]. International Journal of Applied Ceramic Technology, 2024, 21(2): 934-946. [26] LI X X, YAN L W, GUO A R, et al. Lightweight porous mullite-silica ceramics with multistage pore structure, low thermal conductivity and improved strength[J]. Ceramics International, 2024, 50(19): 35609-35614. [27] LIU J F, LI Y B, YIN B, et al. Thermally insulating magnesium borate foams with controllable structures[J]. Ceramics International, 2022, 48(17): 25506-25512. [28] BADRUDDIN I A, AZEEM, YUNUS KHAN T M, et al. Heat transfer in porous media: a mini review[J]. Materials Today: Proceedings, 2020, 24: 1318-1321. [29] LIU J J, LI Y B, LI Y W, et al. Effects of pore structure on thermal conductivity and strength of alumina porous ceramics using carbon black as pore-forming agent[J]. Ceramics International, 2016, 42(7): 8221-8228. [30] NAIT-ALI B, DANGLADE C, SMITH D S, et al. Effect of humidity on the thermal conductivity of porous zirconia ceramics[J]. Journal of the European Ceramic Society, 2013, 33(13/14): 2565-2571. [31] KULTAYEVA S, HA J H, MALIK R, et al. Effects of porosity on electrical and thermal conductivities of porous SiC ceramics[J]. Journal of the European Ceramic Society, 2020, 40(4): 996-1004. [32] JIANG K F, XIA M L, TANG Y J, et al. Formation of closed pore structure in CaO-MgO-Al2O3-SiO2 (CMAS) porous glass-ceramics via Fe2O3 modified foaming for thermal insulation[J]. Journal of the European Ceramic Society, 2023, 43(4): 1689-1697. [33] ZHU X Y, SUN N, HUANG Y, et al. Preparation of full tailings-based foam ceramics and auxiliary foaming effect of vanadium-titanium magnetite tailings[J]. Journal of Non-Crystalline Solids, 2021, 571: 121063. [34] CHEN Z W, WANG H, JI R, et al. Reuse of mineral wool waste and recycled glass in ceramic foams[J]. Ceramics International, 2019, 45(12): 15057-15064. [35] ABBASI S, MIRKAZEMI S M, ZIAEE A, et al. The effects of Fe2O3 and Co3O4 on microstructure and properties of foam glass from soda lime waste glasses[J]. Glass Physics and Chemistry, 2014, 40(2): 173-179. [36] SGLAVO V M, CAMPOSTRINI R, MAURINA S, et al. Bauxite ‘red mud’ in the ceramic industry. Part 1: thermal behaviour[J]. Journal of the European Ceramic Society, 2000, 20(3): 235-244. [37] YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Applied Surface Science, 2008, 254(8): 2441-2449. [38] WU S Z, ZHOU Y, GAO W, et al. Preparation and properties of shape-stable phase change material with enhanced thermal conductivity based on SiC porous ceramic carrier made of iron tailings[J]. Applied Energy, 2024, 355: 122256. [39] SMITH D S, ALZINA A, BOURRET J, et al. Thermal conductivity of porous materials[J]. Journal of Materials Research, 2013, 28(17): 2260-2272. [40] SHUKLA P, CHERNATYNSKIY A, NINO J C, et al. Effect of inversion on thermoelastic and thermal transport properties of MgAl2O4 spinel by atomistic simulation[J]. Journal of Materials Science, 2011, 46(1): 55-62. [41] 刘 全, 孙红娟, 彭同江, 等. 烧结温度对石棉矿山废石制备微晶玻璃析晶性能的影响[J]. 材料导报, 2022, 36(15): 86-90. LIU Q, SUN H J, PENG T J, et al. Effect of sintering temperature on crystallization properties of glass-ceramics prepared from asbestos mine waste rock[J]. Materials Reports, 2022, 36(15): 86-90 (in Chinese). [42] 李 湘, 孙红娟, 彭同江, 等. 石棉尾矿制备原顽火辉石基微晶陶瓷的物相组成演变及性能研究[J]. 硅酸盐通报, 2023, 42(6): 2172-2181. LI X, SUN H J, PENG T J, et al. Phase composition evolution and properties of proto-enstatite-base microcrystalline ceramics prepared by asbestos tailings[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(6): 2172-2181 (in Chinese). [43] NI C M, FAN H W, WANG X D, et al. Thermal conductivity prediction of MgAl2O4: a non-equilibrium molecular dynamics calculation[J]. Journal of Iron and Steel Research International, 2020, 27(5): 500-505. [44] CHO T Y, KIM Y W. Effect of grain growth on the thermal conductivity of liquid-phase sintered silicon carbide ceramics[J]. Journal of the European Ceramic Society, 2017, 37(11): 3475-3481. [45] JANG S H, KIM Y W, KIM K J, et al. Effects of Y2O3-RE2O3 (RE = Sm, Gd, Lu) additives on electrical and thermal properties of silicon carbide ceramics[J]. Journal of the American Ceramic Society, 2016, 99(1): 265-272. [46] CHO T Y, KIM Y W, KIM K J. Thermal, electrical, and mechanical properties of pressureless sintered silicon carbide ceramics with yttria-scandia-aluminum nitride[J]. Journal of the European Ceramic Society, 2016, 36(11): 2659-2665. [47] ZHANG H P, JIA H, WANG Y M, et al. Microstructure, thermal conductivity, and temperature-dependent infrared emissivity of divalent transition metal ions doped α-cordierite ceramics[J]. Materials Today Communications, 2022, 31: 103836. [48] BOUTALEB M, TABIT K, MANSORI M, et al. Synthesis of low-cost refractory cordierite for solar thermal storage: characterization of mechanical, thermal and physical stability during thermal shock cycles[J]. Journal of Energy Storage, 2024, 101: 113893. [49] ZHANG L F, OLHERO S, FERREIRA J M F. Thermo-mechanical and high-temperature dielectric properties of cordierite-mullite-alumina ceramics[J]. Ceramics International, 2016, 42(15): 16897-16905. [50] HORAI K I. Thermal conductivity of rock-forming minerals[J]. Journal of Geophysical Research, 1971, 76(5): 1278-1308. [51] AKRAMI S, EDALATI P, FUJI M, et al. High-entropy ceramics: review of principles, production and applications[J]. Materials Science and Engineering: R: Reports, 2021, 146: 100644. [52] LI Y R, WANG J M, WANG J Y. Approaching extremely low thermal conductivity by crystal structure engineering in Mg2Al4Si5O18[J]. Journal of Materials Research, 2015, 30(24): 3729-3739. [53] LAO X B, XU X Y, JIANG W H, et al. Effect of excess MgO on microstructure and thermal properties of cordierite ceramics for high-temperature thermal storage[J]. Ceramics International, 2019, 45(17): 22264-22272. [54] GÖKÇE H, AĞAOĞULLARι D, LÜTFI Ö M, et al. Characterization of microstructural and thermal properties of steatite/cordierite ceramics prepared by using natural raw materials[J]. Journal of the European Ceramic Society, 2011, 31(14): 2741-2747. [55] LAO X B, XU X Y, JIANG W H, et al. Influences of impurities and mineralogical structure of different kaolin minerals on thermal properties of cordierite ceramics for high-temperature thermal storage[J]. Applied Clay Science, 2020, 187: 105485. [56] GUO T S, LIU Z L, YU C, et al. Effect of pore structure evolution on mechanical properties and thermal conductivity of porous SiC-mullite ceramics[J]. Ceramics International, 2023, 49(21): 33618-33627. [57] LIU J J, REN B, ZHU T B, et al. Enhanced mechanical properties and decreased thermal conductivity of porous alumina ceramics by optimizing pore structure[J]. Ceramics International, 2018, 44(11): 13240-13246. |