[1] 杜 咏, 严奥宇, 戚洪辉. 纤维增强超高强混凝土防高温爆裂研究[J]. 建筑材料学报, 2021, 24(1): 216-223. DU Y, YAN A Y, QI H H. Spalling prevention of fibre reinforced ultra-high strength concrete (FRUHSC) subject to high temperature[J]. Journal of Building Materials, 2021, 24(1): 216-223 (in Chinese). [2] 郑文忠, 侯晓萌, 王 英. 混凝土及预应力混凝土结构抗火研究现状与展望[J]. 哈尔滨工业大学学报, 2016, 48(12): 1-18. ZHENG W Z, HOU X M, WANG Y. Progress and prospect of fire resistance of reinforced concrete and prestressed concrete structures[J]. Journal of Harbin Institute of Technology, 2016, 48(12): 1-18 (in Chinese). [3] 高世壮. 高温损伤SHCC力学与吸水性能及微结构特征研究[D]. 青岛: 青岛理工大学, 2022. GAO S Z. Study on mechanics, water absorption and microstructure characteristics of SHCC damaged at high temperature[D]. Qingdao: Qingdao Tehcnology University, 2022 (in Chinese). [4] 商兴艳, 陆洲导. 高温后水泥基复合材料的力学性能[J]. 材料热处理学报, 2015, 36(5): 24-28. SHANG X Y, LU Z D. Mechanical properties of engineered cementitious composites exposed to elevated temperatures[J]. Transactions of Materials and Heat Treatment, 2015, 36(5): 24-28 (in Chinese). [5] PENG G F, YANG W W, ZHAO J, et al. Explosive spalling and residual mechanical properties of fiber-toughened high-performance concrete subjected to high temperatures[J]. Cement and Concrete Research, 2006, 36(4): 723-727. [6] KIM G Y, KIM Y S, LEE T G. Mechanical properties of high-strength concrete subjected to high temperature by stressed test[J]. Transactions of Nonferrous Metals Society of China, 2009, 19: s128-s133. [7] 袁 浩. 钢纤维对混凝土高温后力学性能的影响及作用机制研究[D]. 西安: 西京学院, 2022. YUAN H. Effect of steel fiber on mechanical properties of concrete after high temperature and its mechanism[D]. Xi'an: Xijing University, 2022 (in Chinese). [8] 林亚强. 混杂纤维对UHPC力学性能影响及增强增韧研究[D]. 绵阳: 西南科技大学, 2022. LIN Y Q. Effect of hybrid fiber on mechanical properties of UHPC and study on its reinforcement and toughening[D]. Mianyang: Southwest University of Science and Technology, 2022 (in Chinese). [9] 许 昊. 玄武岩纤维混凝土高温损伤规律试验研究[D]. 邯郸: 河北工程大学, 2022. XU H. Experimental study on damage law of basalt fiber reinforced concrete at high temperature[D]. Handan: Hebei University of Engineering, 2022 (in Chinese). [10] 郑倩倩. 混杂纤维粉煤灰混凝土高温力学性能试验与气孔结构分析[D]. 淮南: 安徽理工大学, 2022. ZHENG Q Q. Experimental study on high-temperature mechanical properties and pore structure analysis of hybrid fiber fly ash concrete[D]. Huainan: Anhui University of Science & Technology, 2022 (in Chinese). [11] CAETANO H, RODRIGUES J P C, PIMIENTA P. Flexural strength at high temperatures of a high strength steel and polypropylene fibre concrete[J]. Construction and Building Materials, 2019, 227: 116721. [12] HOU X M, REN P F, RONG Q, et al. Effect of fire insulation on fire resistance of hybrid-fiber reinforced reactive powder concrete beams[J]. Composite Structures, 2019, 209: 219-232. [13] 韩 丰. 高温后混杂纤维自密实混凝土力学性能和水渗性能研究[D]. 吉林: 东北电力大学, 2022. HAN F. Study on mechanical properties and water permeability of hybrid fiber self-compacting concrete after high temperature[D]. Jilin: Northeast Dianli University, 2022 (in Chinese). [14] 张晓艺, 杜红秀, 陈 尧. 混杂纤维对C60HPC高温后劈拉强度及超声声速的影响[J]. 消防科学与技术, 2019, 38(11): 1506-1509. ZHANG X Y, DU H X, CHEN Y. Influence of hybrid fiber on tensile strength and ultrasonic velocity of C60HPC after high temperature[J]. Fire Science and Technology, 2019, 38(11): 1506-1509 (in Chinese). [15] SCIARRETTA F, FAVA S, FRANCINI M, et al. Ultra-high performance concrete (UHPC) with polypropylene (Pp) and steel fibres: investigation on the high temperature behaviour[J]. Construction and Building Materials, 2021, 304: 124608. [16] LI Y, TAN K H, YANG E H. Synergistic effects of hybrid polypropylene and steel fibers on explosive spalling prevention of ultra-high performance concrete at elevated temperature[J]. Cement and Concrete Composites, 2019, 96: 174-181. [17] KALIFA P, CHÉNÉ G, GALLÉ C. High-temperature behaviour of HPC with polypropylene fibres[J]. Cement and Concrete Research, 2001, 31(10): 1487-1499. [18] 赵 静, 李晓峰, 郭 力. 玄武岩-聚丙烯纤维混凝土孔隙结构分形维数及力学性能研究[J]. 复合材料科学与工程, 2023(8): 78-84. ZHAO J, LI X F, GUO L. Study on fractal dimension and mechanical properties of basalt polypropylene fiber concrete pore structure[J]. Composites Science and Engineering, 2023(8): 78-84 (in Chinese). [19] ZHANG Y T, SUN X W. An investigation of the hybrid effect of pre-absorbed lightweight aggregate and basalt-polypropylene fiber on concrete performance[J]. Construction and Building Materials, 2023, 408: 133626. [20] YAO Y, WANG B Q, ZHUGE Y, et al. Properties of hybrid basalt-polypropylene fiber reinforced mortar at different temperatures[J]. Construction and Building Materials, 2022, 346: 128433. [21] TANGIRALA A, RAWAT S, LAHOTI M. High volume fly ash and basalt-polypropylene fibres as performance enhancers of novel fire-resistant fibre reinforced cementitious composites[J]. Journal of Building Engineering, 2023, 78: 107586. [22] SU Q, XU J M. Durability and mechanical properties of rubber concrete incorporating basalt and polypropylene fibers: experimental evaluation at elevated temperatures[J]. Construction and Building Materials, 2023, 368: 130445. [23] 孔祥清, 袁绍林, 董锦坤, 等. 聚丙烯-玄武岩混杂纤维再生混凝土高温性能试验研究[J]. 科学技术与工程, 2018, 18(21): 101-106. KONG X Q, YUAN S L, DONG J K, et al. Experimental study on performance of polypropylene-basalt hybrid fiber reinforced recycled aggregate concrete after exposure to elevated temperatures[J]. Science Technology and Engineering, 2018, 18(21): 101-106 (in Chinese). [24] 陈 菁, 顾轶卓, 杨中甲, 等. 高温处理对几种玄武岩纤维成分和拉伸性能的影响[J]. 材料工程, 2017, 45(6): 61-66. CHEN J, GU Y Z, YANG Z J, et al. Effects of elevated temperature treatment on compositions and tensile properties of several kinds of basalt fibers[J]. Journal of Materials Engineering, 2017, 45(6): 61-66 (in Chinese). [25] KOKSAL F, KOCABEYOGLU E T, GENCEL O, et al. The effects of high temperature and cooling regimes on the mechanical and durability properties of basalt fiber reinforced mortars with silica fume[J]. Cement and Concrete Composites, 2021, 121: 104107. [26] 国家市场监督管理总局, 国家标准化管理委员会. 水泥胶砂强度检验方法(ISO法): GB/T 17671—2021[S]. 北京: 中国标准出版社, 2021. State Administration for Market Regulation, China National Standardization Administration. Test method for strength of cement mortar (ISO method): GB/T 17671—2021[S]. Beijing: Standards Press of China, 2021 (in Chinese). [27] 中国工程建设标准化协会. 超声回弹综合法检测混凝土强度技术规程: CECS 02—2005[S]. 北京: 中国计划出版社, 2005. China Association for Standardization of Engineering Construction. Technical specification for ultrasonic rebound comprehensive method for testing concrete strength: CECS 02—2005[S]. Beijing: China Planning Press, 2005 (in Chinese). [28] MA Z M, YAO P P, YANG D Y, et al. Effects of fire-damaged concrete waste on the properties of its preparing recycled aggregate, recycled powder and newmade concrete[J]. Journal of Materials Research and Technology, 2021, 15: 1030-1045. [29] QIN H, YANG J C, YAN K, et al. Experimental research on the spalling behaviour of ultra-high performance concrete under fire conditions[J]. Construction and Building Materials, 2021, 303: 124464. [30] 王泊桥. 聚丙烯-玄武岩混杂纤维水泥砂浆高温力学性能研究[D]. 西安: 西安建筑科技大学, 2022. WANG B Q. Study on high temperature mechanical properties of polypropylene-basalt hybrid fiber cement mortar[D]. Xi'an: Xi'an University of Architecture and Technology, 2022 (in Chinese). [31] 朱柏衡, 刘华新. 高温后混杂纤维再生混凝土力学性能试验研究[J]. 铁道科学与工程学报, 2021, 18(6): 1479-1485. ZHU B H, LIU H X. Experimental study on mechanical properties of hybrid fiber reinforced recycled concrete after high temperature[J]. Journal of Railway Science and Engineering, 2021, 18(6): 1479-1485 (in Chinese). [32] QIAN Y F, YANG D Y, XIA Y H, et al. Properties and improvement of ultra-high performance concrete with coarse aggregates and polypropylene fibers after high-temperature damage[J]. Construction and Building Materials, 2023, 364: 129925. [33] 程宝娟, 王立成, 鲍玖文, 等. 养护条件对混凝土毛细吸水性能的影响[J]. 水利水运工程学报, 2016(6): 76-82. CHENG B J, WANG L C, BAO J W, et al. Experimental studies on influences of curing conditions on capillary absorption of concrete[J]. Hydro-Science and Engineering, 2016(6): 76-82 (in Chinese). [34] 向君正, 宋 慧, 冷梦辉, 等. 骨料粒径对透水混凝土超声波波速影响[J]. 混凝土, 2022(10): 106-111. XIANG J Z, SONG H, LENG M H, et al. Effect of aggregate size on ultrasonic pulse velocity of pervious concrete[J]. Concrete, 2022(10): 106-111 (in Chinese). [35] 刘雅琦, 王淑娟, 李立新. 高炉镍铁渣和钢纤维改性混凝土的耐热性和热损伤规律[J]. 硅酸盐通报, 2021, 40(7): 2320-2330. LIU Y Q, WANG S J, LI L X. Heat resistance and thermal damage law of blast furnace nickel-iron slag and steel fiber modified concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(7): 2320-2330 (in Chinese). [36] NIU D T, HUANG D G, FU Q A. Experimental investigation on compressive strength and chloride permeability of fiber-reinforced concrete with basalt-polypropylene fibers[J]. Advances in Structural Engineering, 2019, 22(10): 2278-2288. [37] 张劲竹, 刘华新, 王家贺, 等. 混杂纤维混凝土高温后性能劣化分析与强度预测[J]. 硅酸盐通报, 2023, 42(4): 1260-1269. ZHANG J Z, LIU H X, WANG J H, et al. Performance degradation analysis and strength prediction of hybrid fiber reinforced concrete after high temperature[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1260-1269 (in Chinese). [38] 刘晓仙, 杜红秀, 徐瑶瑶. 复掺纤维对RPC高温后力学性能及超声规律的影响[J]. 混凝土, 2021(1): 87-90+97. LIU X X, DU H X, XU Y Y. Effect of compound fiber on mechanical properties and ultrasonic velocity law of RPC after high temperature[J]. Concrete, 2021(1): 87-90+97 (in Chinese). [39] 贺一轩, 杜红秀. RPC高温后抗折强度试验及红外检测[J]. 消防科学与技术, 2019, 38(5): 615-617. HE Y X, DU H X. Flexural strength test and infrared detection of RPC after elevated temperature[J]. Fire Science and Technology, 2019, 38(5): 615-617 (in Chinese). [40] 董帅锋, 薛善彬, 张 鹏, 等. 高温后砂浆的水分传输与力学性能试验研究[J]. 混凝土, 2021(2): 101-105. DONG S F, XUE S B, ZHANG P, et al. Experimental study on moisture transport and mechanical properties of mortar after high temperature[J]. Concrete, 2021(2): 101-105 (in Chinese). [41] 刘志强. 高温损伤对混凝土力学性能与抗渗性能的影响研究[D]. 青岛: 青岛理工大学, 2012. LIU Z Q. Study on the influence of high temperature damage on mechanical properties and impermeability of concrete[D]. Qingdao: Qingdao Tehcnology University, 2012 (in Chinese). [42] 董帅锋. 高温损伤水泥砂浆微结构演化及水分传输与力学性能的试验研究[D]. 青岛: 青岛理工大学, 2019. DONG S F. Experimental study on microstructure evolution, moisture transfer and mechanical properties of cement mortar damaged by high temperature[D]. Qingdao: Qingdao Tehcnology University, 2019 (in Chinese). [43] ZHOU A, QIU Q W, CHOW C L, et al. Interfacial performance of aramid, basalt and carbon fiber reinforced polymer bonded concrete exposed to high temperature[J]. Composites Part A: Applied Science and Manufacturing, 2020, 131: 105802. [44] 高世壮, 薛善彬, 张 鹏, 等. 高温作用对应变硬化水泥基复合材料吸水性能及微结构演化特征的影响[J]. 复合材料学报, 2022, 39(10): 4778-4787. GAO S Z, XUE S B, ZHANG P, et al. Effect of high temperature environment on water absorption and microstructure evolution of strain hardening cementitious composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4778-4787 (in Chinese). [45] 王万平. 混杂纤维高性能混凝土高温后微观结构研究[D]. 吉林: 东北电力大学, 2020. WANG W P. Study on microstructure of hybrid fiber high performance concrete after high temperature[D]. Jilin: Northeast Dianli University, 2020 (in Chinese). [46] 申嘉荣, 徐千军. 高温对混凝土孔隙结构改变和抗压强度降低作用的规律研究[J]. 材料导报, 2020, 34(2): 2046-2051. SHEN J R, XU Q J. Characteristics of pore structure change and compressive strength reduction of concrete under elevated temperatures[J]. Materials Reports, 2020, 34(2): 2046-2051 (in Chinese). [47] 吴中伟. 混凝土科学技术近期发展方向的探讨[J]. 硅酸盐学报, 1979, 7(3): 262-270. WU Z W. An approach to the recent trends of concrete science and technology[J]. Journal of the Chinese Ceramic Society, 1979, 7(3): 262-270 (in Chinese). [48] 阎蕊珍. 高温对C40高性能混凝土物理力学性能的影响[D]. 太原: 太原理工大学, 2015. YAN R Z. Influence of high temperature on physical and mechanical properties of C40 high performance concrete[D]. Taiyuan: Taiyuan University of Technology, 2015 (in Chinese). |