[1] 吴 放. 我国碳达峰、碳中和进程中核能的地位和作用[J]. 核科学与工程, 2022, 42(4): 737-743. WU F. The role of nuclear in China's carbon peaking and carbon neutrality course[J]. Nuclear Science and Engineering, 2022, 42(4): 737-743 (in Chinese). [2] 詹乐昌, 包 捷, 郝慧杰, 等. 放射性物品分类方法研究[J]. 核技术, 2023, 46(1): 43-49. ZHAN L C, BAO J, HAO H J, et al. Research on methodology of radioactive materials[J]. Nuclear Techniques, 2023, 46(1): 43-49 (in Chinese). [3] 张召文. 中低放废物处理进展[J]. 当代化工研究, 2017(3): 52-53. ZHANG Z W. The progress of low and medium radioactive disposal[J]. Modern Chemical Research, 2017(3): 52-53 (in Chinese). [4] 徐国庆. 高放废物分类处置的国际新动向[J]. 世界核地质科学, 2017, 34(2): 118-124. XU G Q. A new international trend of options for HLW classification disposal[J]. World Nuclear Geoscience, 2017, 34(2): 118-124 (in Chinese). [5] 王 宇, 邢庆立, 孟保健, 等. 高放废物玻璃固化技术研究进展[J]. 中国建材科技, 2020, 29(4): 26-28. WANG Y, XING Q L, MENG B J, et al. Research progress of vitrification of high level radioactive waste[J]. China Building Materials Science & Technology, 2020, 29(4): 26-28 (in Chinese). [6] 钱 敏, 凡思军, 薛天锋, 等. 高放废液硼硅酸盐玻璃固化配方研究进展[J]. 硅酸盐学报, 2021, 49(10): 2251-2265. QIAN M, FAN S J, XUE T F, et al. Research progress on borosilicate glass formulation for high-level liquid waste immobilization[J]. Journal of the Chinese Ceramic Society, 2021, 49(10): 2251-2265 (in Chinese). [7] 段 涛, 丁 艺, 罗世淋, 等. 回归自然: 人造岩石固化核素的思考与进展[J]. 无机材料学报, 2021, 36(1): 25-35. DUAN T, DING Y, LUO S L, et al. Radionuclides from nature to nature: recent progress in immobilization of high level nuclear wastes in SYNROC[J]. Journal of Inorganic Materials, 2021, 36(1): 25-35 (in Chinese). [8] 孟保健, 朱永昌, 邢庆立, 等. 高放废物玻璃陶瓷固化基材研究进展[J]. 玻璃, 2020, 47(12): 10-15. MENG B J, ZHU Y C, XING Q L, et al. Review of the glass-ceramics for immobilization of high level radioactive waste[J]. Glass, 2020, 47(12): 10-15 (in Chinese). [9] BELL J L, DRIEMEYER P E, KRIVEN W M. Formation of ceramics from metakaolin-based geopolymers. Part II: K-based geopolymer[J]. Journal of the American Ceramic Society, 2009, 92(3): 607-615. [10] LIU X N, DING Y, LU X R. Immobilization of simulated radionuclide 90Sr by fly ash-slag-metakaolin-based geopolymer[J]. Nuclear Technology, 2017, 198(1): 64-69. [11] FERNANDEZ-JIMENEZ A, MACPHEE D E, LACHOWSKI E E, et al. Immobilization of cesium in alkaline activated fly ash matrix[J]. Journal of Nuclear Materials, 2005, 346(2/3): 185-193. [12] CHEN S, REN D, LIU L K, et al. Sintering of metakaolin-based Na/Ca-geopolymers and their immobilization of Cs[J]. Journal of the American Ceramic Society, 2019, 102(12): 7125-7136. [13] CHLIQUE C, LAMBERTIN D, ANTONUCCI P, et al. XRD analysis of the role of cesium in sodium-based geopolymer[J]. Journal of the American Ceramic Society, 2015, 98(4): 1308-1313. [14] JIA L Y, HE P G, JIA D C, et al. Immobilization behavior of Sr in geopolymer and its ceramic product[J]. Journal of the American Ceramic Society, 2020, 103(2): 1372-1384. [15] LI L, XU Z H, LI H, et al. Immobilization of strontium and cesium by aluminosilicate ceramics derived from metakaolin geopolymer-zeolite A composites via 1 100 ℃ heating treatment[J]. Ceramics International, 2022, 48(11): 15236-15242. [16] 李 秋, 姜雨杭, 耿海宁, 等. 钾基地聚物防火涂料性能与陶瓷化研究[J]. 硅酸盐通报, 2022, 41(5): 1805-1812. LI Q, JIANG Y H, GENG H N, et al. Properties and ceramization of potassium-based geopolymer fire resistance coating[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(5): 1805-1812 (in Chinese). [17] 罗俊瑶, 李雪莹, 侯 莉, 等. 硅灰对偏高岭土基地聚合物防火涂料性能影响[J]. 功能材料, 2022, 53(4): 4121-4127. LUO J Y, LI X Y, HOU L, et al. Effect of silica fume on metakaolin-based geopolymer fireproof coatings[J]. Journal of Functional Materials, 2022, 53(4): 4121-4127 (in Chinese). [18] 杨建文. 富烧绿石人造岩石和锆英石固化模拟锕系废物研究[D]. 北京: 中国原子能科学研究院, 2000. YANG J W. Study on solidification of simulated actinide waste from rich-burned greenstone artificial rocks and zircon[D]. Beijing: China Institute of Atomic Energy, 2000 (in Chinese). [19] ASTM. Standard test method for static leaching of monolithic waste forms for disposal of radioactive waste: C1220—21[S]. America: ASTM International, 2021. [20] NIU X B, ELAKNESWARAN Y, ISLAM C R, et al. Adsorption behaviour of simulant radionuclide cations and anions in metakaolin-based geopolymer[J]. Journal of Hazardous Materials, 2022, 429: 128373. [21] 黄丽婷, 刘 洋, 彭 诚, 等. 立方相白榴石的合成与稳定[J]. 硅酸盐学报, 2017, 45(7): 948-954. HUANG L T, LIU Y, PENG C, et al. Synthesis and stabilization of cubic leucite[J]. Journal of the Chinese Ceramic Society, 2017, 45(7): 948-954 (in Chinese). [22] HE P G, YANG Z H, YANG J L, et al. Preparation of fully stabilized cubic-leucite composite through heat-treating Cs-substituted K-geopolymer composite at high temperatures[J]. Composites Science and Technology, 2015, 107: 44-53. [23] 文 进, 孙淑珍, 陈 璐, 等. 钾长石在白榴石合成中的应用[J]. 生物医学工程研究, 2004, 23(3): 164-166. WEN J, SUN S Z, CHEN L, et al. Application of feldspar in synthesis of leucite[J]. Journal of Biomedical Engineering Research, 2004, 23(3): 164-166 (in Chinese). [24] DING Y, JIANG Z D, XIONG T H, et al. Phase and microstructure evolution of 0.2Zr1-xCexO2/Zr1-yCeySiO4 (0≤x+y≤1) ceramics designed to immobilize tetravalent actinides[J]. Journal of Nuclear Materials, 2020, 539: 152318. [25] SUN Y, YANG Q H, WANG H Q, et al. Depression of synthesis temperature and structure characterization of ZrSiO4 used in ceramic pigments[J]. Materials Chemistry and Physics, 2018, 205: 97-101. [26] STEFANOVSKY S V, YUDINTSEV S V, NICKOLSKY M S, et al. Characterization of modified murataite based ceramics as a perspective hosts for actinides, fission, and corrosion products of HLW[J]. Journal of Nuclear Materials, 2020, 529: 151958. [27] LUO J, LI X, ZHANG F J, et al. Sintering of monoclinic SrAl2Si2O8 ceramics and their Sr immobilization[J]. International Journal of Minerals, Metallurgy and Materials, 2021, 28(6): 1057-1062. [28] PFAU A, SCHIERBAUM K D. The electronic structure of stoichiometric and reduced CeO2 surfaces: an XPS, UPS and HREELS study[J]. Surface Science, 1994, 321(1/2): 71-80. [29] GREGG D J, FARZANA R, DAYAL P, et al. Synroc technology: perspectives and current status (review)[J]. Journal of the American Ceramic Society, 2020, 103(10): 5424-5441. [30] ZHAO M Y, BIRKNER N, SCHAEPERKOETTER J, et al. Durable Cr-substituted (Ba,Cs)1.33(Cr,Ti)8O16 hollandite waste forms with high Cs loading[J]. Journal of the American Ceramic Society, 2022, 105(6): 4564-4576. [31] WANG Y, WANG J, ZHANG X, et al. Order-disorder structural tailoring and its effects on the chemical stability of (Gd,Nd)2(Zr,Ce)2O7 pyrochlore ceramic for nuclear waste forms[J]. Nuclear Engineering and Technology, 2022, 54(7): 2427-2434.[32] LAGO D C, SÁNCHEZ A D, PRADO M O. Cesium immobilization in porous silica and 137Cs self-heating simulations[J]. Journal of Nuclear Materials, 2022, 565: 153697. [33] PAPYNOV E K, BELOV A A, SHICHALIN O O, et al. SrAl2Si2O8 ceramic matrices for 90Sr immobilization obtained via spark plasma sintering-reactive synthesis[J]. Nuclear Engineering and Technology, 2021, 53(7): 2289-2294. [34] LI Z, CAO Y X, MAO X L, et al. In-situ immobilization of soil containing simulated radionuclide Ce using AC/CaCO3/nano-HAP by microwave sintering[J]. Journal of Radioanalytical and Nuclear Chemistry, 2021, 328(1): 315-323. [35] FABIAN M, PINAKIDOU F, TOLNAI I, et al. Lanthanide (Ce,Nd,Eu) environments and leaching behavior in borosilicate glasses[J]. Scientific Reports, 2021, 11(1): 1-15. |