[1] 陈 靖, 王建晨. 从高放废液中去除锕系元素的TRPO流程发展三十年[J]. 化学进展, 2011, 23(7): 1366-1371. CHEN J, WANG J C. Overview of 30 years research on TRPO process for actinides partitioning from high level liquid waste[J]. Progress in Chemistry, 2011, 23(7): 1366-1371 (in Chinese). [2] LEIFER J, ZAPP P E, MICKALONIS J I. Predictive models for determination of pitting corrosion versus inhibitor concentrations and temperature for radioactive sludge in carbon steel waste tanks[J]. Corrosion, 1999, 55(1): 31-37. [3] BINGHAM P A HYATT N C HAND R J. Vitrification of UK intermediate level radioactive wastes arising from site decommissioning: property modelling and selection of candidate host glass compositions[J]. Glass Technology-European Journal of Glass Science and Technology Part A, 2012, 53(3): 83-100. [4] 王见强, 唐 坡, 赵玲君, 等. 高放废液储罐内放射性沉积物的取样[C]//中国核学会2019年学术年会论文集第8册. 北京: 中国原子能出版社, 2019: 35-41. WANG J Q, TANG P, ZHAO L J, et al. Sampling of radioactive sediments in high-level liquid waste storage tanks[C]//Proceedings of the 2019 Annual Academic Conference of the Chinese Nuclear Society, Vol.8. Beijing: China Atomic Energy Press, 2019: 35-41 (in Chinese). [5] 罗上庚. 玻璃固化国际现状及发展前景[J]. 硅酸盐通报, 2003, 22(1): 42-48. LUO S G. Status and prospect of vitrification technology[J]. Bulletin of the Chinese Ceramic Society, 2003, 22(1): 42-48 (in Chinese). [6] 孟保健, 朱永昌, 焦云杰, 等. 模拟高放废液玻璃固化体析晶性能研究[J]. 硅酸盐通报, 2021, 40(10): 3516-3522. MENG B J, ZHU Y C, JIAO Y J, et al. Crystallization performance of simulated high-level waste glasses[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(10): 3516-3522 (in Chinese). [7] 李玉松, 张生栋, 鲜 亮, 等. CIAE高放废液固化技术研发进展[J]. 原子能科学技术, 2020, 54(s1): 126-136. LI Y S, ZHANG S D, XIAN L, et al. Progress in research and development of vitrification technology for high-level radioactive liquid waste at CIAE[J]. Atomic Energy Science and Technology, 2020, 54(s1): 126-136 (in Chinese). [8] 刘坤贤, 李韶华, 郑立英, 等. 高放泥浆研究Ⅲ. 高放泥浆取样系统的研制及取样[J]. 核化学与放射化学, 2004, 26(1): 34-37+52. LIU K X, LI S H, ZHENG L Y, et al. The preliminary study of high-level radioactivity sludge Ⅲ. Study on sampling system and the sampling action of the HLRS[J]. Journal of Nuclear and Radiochemistry, 2004, 26(1): 34-37+52 (in Chinese). [9] 梁俊福, 宋崇立, 潘翠玲, 等. 高放泥浆研究Ⅰ. 模拟高放泥浆的配制及性能研究[J]. 核化学与放射化学, 2000, 22(1): 37-44. LIANG J F, SONG C L, PAN C L, et al. The preliminary study of high-level radioactive sludge Ⅰ. preparation and property study of simulated high level radioactive sludge[J]. Journal of Nuclear and Radiochemistry, 2000, 22(1): 37-44 (in Chinese). [10] 核工业标准化研究所. 放射性废物体和废物包的特性鉴定: EJ 1186—2005[S]. 北京: 中国标准出版社, 2005. China Industry Standardization Institute. Characterization of radioactive waste forms and packages: EJ 1186—2005[S]. Beijing: China Standards Press, 2005 (in Chinese). [11] ROSE P B, WOODWARD D I, OJOVAN M I, et al. Crystallisation of a simulated borosilicate high-level waste glass produced on a full-scale vitrification line[J]. Journal of Non-Crystalline Solids, 2011, 357(15): 2989-3001. [12] SHORT R. Phase separation and crystallisation in UK HLW vitrified products[J]. Procedia Materials Science, 2014, 7: 93-100. [13] SCHULLER S, PINET O, GRANDJEAN A, et al. Phase separation and crystallization of borosilicate glass enriched in MoO3, P2O5, ZrO2, CaO[J]. Journal of Non-Crystalline Solids, 2008, 354(2/3/4/5/6/7/8/9): 296-300. [14] 谭盛恒, HAND R J. 钼酸盐在硼硅酸盐玻璃体系中的溶解[J]. 中国材料进展, 2016, 35(7): 496-503+517. TAN S H, HAND R J. Dissolution of molybdate anions in borosilicate glasses for nuclear waste vitrification use[J]. Materials China, 2016, 35(7): 496-503+517 (in Chinese). [15] PINET O, HOLLEBECQUE J F, HUGON I, et al. Glass ceramic for the vitrification of high level waste with a high molybdenum content[J]. Journal of Nuclear Materials, 2019, 519: 121-127. [16] ACHIGAR S, CAURANT D, RÉGNIER E, et al. Dismantling nuclear waste rich in P2O5, MoO3 and ZrO2: how do these oxides incorporate in aluminoborosilicate glasses?[J]. Journal of Nuclear Materials, 2021, 544: 152731. [17] KHATTAK G D, SALIM M A, AL-HARTHI A S, et al. Structure of molybdenum-phosphate glasses by X-ray photoelectron spectroscopy (XPS)[J]. Journal of Non-Crystalline Solids, 1997, 212(2/3): 180-191. [18] PRAKASH A D, SINGH M, MISHRA R K, et al. Studies on modified borosilicate glass for enhancement of solubility of molybdenum[J]. Journal of Non-Crystalline Solids, 2019, 510: 172-178. [19] 王 宾, 周杨玉铜, 张壮森, 等. P2O5对模拟高放玻璃固化体析晶和抗浸出性能的影响[J]. 原子能科学技术, 2022, 56(12): 2636-2645. WANG B, ZHOU Y Y T, ZHANG Z S, et al. Effect of P2O5 on crystallization and leaching resistance of simulated high-level liquid waste glass[J]. Atomic Energy Science and Technology, 2022, 56(12): 2636-2645 (in Chinese). [20] WU L, XU L G, JIANG F, et al. Microstructure, sulfate retention, and aqueous stability of barite-borosilicate glass-ceramics[J]. Journal of Nuclear Materials, 2019, 516: 152-159. [21] LIAN Q H, ZHANG Z S, WANG B, et al. Effects of Ba(NO3)2 content on yellow phase formation and chemical durability of vitrified waste glass[J]. Journal of Non-Crystalline Solids, 2022, 597: 121933. [22] 姚 颖, 张壮森, 王 宾, 等. 硫酸铅在硼硅酸盐玻璃熔体中的溶解特性[J]. 硅酸盐通报, 2022, 41(3): 1044-1052. YAO Y, ZHANG Z S, WANG B, et al. Dissolution characteristics of lead sulfate in borosilicate glass melt[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(3): 1044-1052 (in Chinese). [23] ASTM. Standard test methods for determining chemical durability of nuclear, hazardous, and mixed waste glasses and multiphase glass ceramics: the product consistency test (PCT): C1285—14[S]. West Conshohocken: ASTM International, 2014. [24] SZUMERA M. Structural investigations of silicate-phosphate glasses containing MoO3 by ftir, Raman and 31P MAS NMR spectroscopies[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 130: 1-6. [25] 连启会. 含钼硼硅盐玻璃陶瓷固化体成分、结构及化学稳定性研究[D]. 绵阳: 西南科技大学, 2020. LIAN Q H. Study on the composition, structure and chemical stability of Mo-containing glass-ceramics[D]. Mianyang: Southwest University of Science and Technology, 2020 (in Chinese). [26] PHURUANGRAT A, THONGTEM T, THONGTEM S. Barium molybdate and barium tungstate nanocrystals synthesized by a cyclic microwave irradiation[J]. Journal of Physics and Chemistry of Solids, 2009, 70(6): 955-959. [27] NICOLEAU E, SCHULLER S, ANGELI F, et al. Phase separation and crystallization effects on the structure and durability of molybdenum borosilicate glass[J]. Journal of Non-Crystalline Solids, 2015, 427: 120-133. [28] SENGUPTA P, DEY K K, HALDER R, et al. Vanadium in borosilicate glass[J]. Journal of the American Ceramic Society, 2015, 98(1): 88-96. [29] MABROUK A, VAILLS Y, PELLERIN N, et al. Structural study of lanthanum sodium aluminoborosilicate glasses by NMR spectroscopy[J]. Materials Chemistry and Physics, 2020, 254: 123492. [30] DU L S, STEBBINS J F. Nature of silicon-boron mixing in sodium borosilicate glasses: a high-resolution 11B and 17O NMR study[J]. The Journal of Physical Chemistry B, 2003, 107(37): 10063-10076. [31] DUPUY C, GHARZOUNI A, SOBRADOS I, et al. 29Si, 27Al, 31P and 11B magic angle spinning nuclear magnetic resonance study of the structural evolutions induced by the use of phosphor- and boron-based additives in geopolymer mixtures[J]. Journal of Non-Crystalline Solids, 2019, 521: 119541. [32] DICKINSON J E, DE JONG B H W S, SCHRAMM C M. Hydrogen-containing glass and gas-ceramic microfoams: Raman, XPS, and MAS-NMR results on the structure of precursor SiO2-B2O3-P2O5 glasses[J]. Journal of Non-Crystalline Solids, 1988, 102(1/2/3): 196-204. [33] 杨瑞强, 汪永清, 周健儿, 等. P2O5对(K,Na)2O-CaO-Al2O3-B2O3-SiO2系分相乳浊釉性能及结构的影响[J]. 硅酸盐学报, 2020, 48(10): 1604-1612. YANG R Q, WANG Y Q, ZHOU J E, et al. Effect of P2O5 on properties and structure of phase-separated opaque glaze in (K,Na)2O-CaO-Al2O3-B2O3-SiO2 system[J]. Journal of the Chinese Ceramic Society, 2020, 48(10): 1604-1612 (in Chinese). [34] OHKUBO T, MONDEN R, IWADATE Y, et al. Structural investigation of aluminoborosilicate glasses containing Na2MoO4 crystallites by solid state NMR[J]. Physics and Chemistry of Glasses: European Journal of Glass Science and Technology Part B, 2015, 56(4): 138-144. [35] MARTINEAU C, MICHAELIS V K, SCHULLER S, et al. Liquid-liquid phase separation in model nuclear waste glasses: a solid-state double-resonance NMR study[J]. Chemistry of Materials, 2010, 22(17): 4896-4903. [36] GEISLER T, JANSSEN A, SCHEITER D, et al. Aqueous corrosion of borosilicate glass under acidic conditions: a new corrosion mechanism[J]. Journal of Non-Crystalline Solids, 2010, 356(28/29/30): 1458-1465. [37] FRANKEL G S, VIENNA J D, LIAN J, et al. A comparative review of the aqueous corrosion of glasses, crystalline ceramics, and metals[J]. Materials Degradation, 2018, 2: 15. [38] KRISHNAMURTHY A, NGUYEN T, FAYEK M, et al. Network structure and dissolution properties of phosphate-doped borosilicate glasses[J]. The Journal of Physical Chemistry C, 2020, 124(38): 21184-21196. |