[1] 郭长庆, 迟文峰, 匡文慧, 等. 1990—2020年中国能源开采和加工场地多源数据综合制图与时空变化分析[J]. 地球信息科学学报, 2022, 24(1): 127-140. GUO C Q, CHI W F, KUANG W H, et al. Mapping and spatio-temporal changes analysis of energy mining and producing sites in China using multi-source data from 1990 to 2020[J]. Journal of Geo-Information Science, 2022, 24(1): 127-140 (in Chinese). [2] 全国煤化工信息总站. 2021年中国能源生产、消费、进出口[J]. 煤化工, 2022, 50(1): 4. National Coal Chemical Industry Information Center. Energy production, consumption, import and export in China in 2021[J]. Coal Chemical Industry, 2022, 50(1): 4 (in Chinese). [3] 刘招君, 孙平昌, 柳 蓉, 等. 中国陆相盆地油页岩成因类型及矿床特征[J]. 古地理学报, 2016, 18(4): 525-534. LIU Z J, SUN P C, LIU R, et al. Genetic types and deposit features of oil shale in continental basin in China[J]. Journal of Palaeogeography (Chinese Edition), 2016, 18(4): 525-534 (in Chinese). [4] 丁 锐. 碱激发油页岩渣-矿渣复合胶凝材料及其质量控制方法的研究[D]. 长春: 吉林大学, 2019. DING R. The study of alkali-activated OSR-slag composite cementitious material and its methods of quality control[D]. Changchun: Jilin University, 2019 (in Chinese). [5] 钱 卫. 油页岩资源勘探开发现状及前景分析[J]. 煤炭加工与综合利用, 2014(6): 26-30. QIAN W. Present situation and prospect analysis of exploration and development of oil shale resources[J]. Coal Processing & Comprehensive Utilization, 2014(6): 26-30 (in Chinese). [6] 陆 浩, 王莹莹, 潘颢丹, 等. 油页岩热解技术研究进展[J]. 应用化工, 2018, 47(9): 2031-2036. LU H, WANG Y Y, PAN H D, et al. Research progress of oil shale pyrolysis technology[J]. Applied Chemical Industry, 2018, 47(9): 2031-2036 (in Chinese). [7] 李孝杨. 油页岩热解半焦燃烧特性及热解/燃烧耦合工艺研究[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2019. LI X Y. Combustion characteristic of oil shale char and study on oil shale pyrolysis coupled combustion process[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2019 (in Chinese). [8] 李 勇, 冯宗玉, 杨 合, 等. 利用油页岩渣制备微晶玻璃[J]. 东北大学学报(自然科学版), 2008, 29(10): 1450-1454. LI Y, FENG Z Y, YANG H, et al. Preparation of glass-ceramics from oil shale residue[J]. Journal of Northeastern University (Natural Science), 2008, 29(10): 1450-1454 (in Chinese). [9] 雒 锋, 时成林, 魏存弟, 等. 油页岩CFB渣对水泥胶砂性能的影响[J]. 非金属矿, 2016, 39(5): 58-60. LUO F, SHI C L, WEI C D, et al. Effect of oil shale CFB slag on performance of cementitious matter/sand in cement[J]. Non-Metallic Mines, 2016, 39(5): 58-60 (in Chinese). [10] LUAN J D, LI A M, SU T, et al. Synthesis of nucleated glass-ceramics using oil shale fly ash[J]. Journal of Hazardous Materials, 2010, 173(1/2/3): 427-432. [11] MARANGONI M, PONSOT I, KUUSIK R, et al. Strong and chemically inert sinter crystallised glass ceramics based on Estonian oil shale ash[J]. Advances in Applied Ceramics, 2014, 113(2): 120-128. [12] RADWAN M M, FARAG L M, ABO-EL-ENEIN S A, et al. Alkali activation of blended cements containing oil shale ash[J]. Construction and Building Materials, 2013, 40: 367-377. [13] 郝云峰. 油页岩废渣细粉在水泥混凝土中的应用研究[D]. 长春: 吉林大学, 2018. HAO Y F. Research on the application of oil shale waste slag fine powder in cement concrete[D]. Changchun: Jilin University, 2018 (in Chinese). [14] 李文举, 曹 贵, 李 波. 油页岩半焦作为水泥混合材的可行性研究[J]. 硅酸盐通报, 2022, 41(2): 649-656+666. LI W J, CAO G, LI B. Feasibility study of oil shale semi-coke as cement admixture[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 649-656+666 (in Chinese). [15] 许 杰. 硅酸盐固体废弃物用作混凝土掺合料的研究进展[J]. 环境工程, 2015, 33(s1): 562-565+569. XU J. Research progress of application of silicate solid wastes as concrete admixture[J]. Environmental Engineering, 2015, 33(s1): 562-565+569 (in Chinese). [16] 倪 红. 固体废弃物的资源化利用: 评《固体废弃物在绿色建材中的应用》[J]. 混凝土与水泥制品, 2020(12): 96-97. NI H. Resource utilization of solid waste: comment on application of solid waste in green building materials[J]. China Concrete and Cement Products, 2020(12): 96-97 (in Chinese). [17] 张海龙, 王社良, 袁晓洒. 基于核磁共振和超声波探伤技术的混凝土耐久性分析[J]. 材料科学与工程学报, 2022, 40(1): 40-45+96. ZHANG H L, WANG S L, YUAN X S. Durability analysis of concrete based on nuclear magnetic resonance and ultrasonic flaw detection technology[J]. Journal of Materials Science and Engineering, 2022, 40(1): 40-45+96 (in Chinese). [18] 张菊辉, 方 成. 氯盐侵蚀下钢筋混凝土结构寿命的预测研究进展[J]. 材料科学与工程学报, 2019, 37(5): 848-854+859. ZHANG J H, FANG C. Research progress on service life prediction of reinforced concrete structures under chloride attack[J]. Journal of Materials Science and Engineering, 2019, 37(5): 848-854+859 (in Chinese). [19] 王腾蛟, 许金余, 彭 光, 等. 纳米碳纤维增强混凝土耐久性试验[J]. 功能材料, 2019, 50(11): 11114-11121. WANG T J, XU J Y, PENG G, et al. Durability test of carbon nanofiber reinforced concrete[J]. Journal of Functional Materials, 2019, 50(11): 11114-11121 (in Chinese). [20] 李 娟. 不同热改性油页岩半焦对水泥胶砂力学性能的影响[J]. 公路交通科技(应用技术版), 2020, 16(8): 29-31. LI J. Effect of different thermal modified oil shale semi-coke on mechanical properties of cement mortar[J]. Highway Traffic Technology (Application Technology Edition), 2020, 16(8): 29-31 (in Chinese). [21] 于本田, 刘 通, 王 焕, 等. 花岗斑岩石粉含量对混凝土性能及微观结构的影响[J]. 吉林大学学报(工学版), 2022, 52(5): 1052-1062. YU B T, LIU T, WANG H, et al. Influence of granite porphyry stone powder content on properties and microstructure of concrete[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(5): 1052-1062 (in Chinese).[22] 段 运, 王起才, 张戎令, 等. 不同养护条件下低水胶比混凝土抗氯离子渗透性及孔结构试验研究[J]. 铁道科学与工程学报, 2016, 13(5): 842-847. DUAN Y, WANG Q C, ZHANG R L, et al. Study of the resistance to chloride ions penetration and pore structure of concrete with low water- binder ratio under various curing conditions[J]. Journal of Railway Science and Engineering, 2016, 13(5): 842-847 (in Chinese). [23] 张淑民. 基础无机化学[M]. 兰州: 兰州大学出版社, 2013. ZHANG S M. Basic inorganic chemistry[M]. Lanzhou: Lanzhou University Press, 2013 (in Chinese). |