欢迎访问《硅酸盐通报》官方网站,今天是
分享到:

硅酸盐通报 ›› 2023, Vol. 42 ›› Issue (4): 1437-1447.

所属专题: 陶瓷

• 陶瓷、玻璃及耐火材料 • 上一篇    下一篇

地聚合物基多相陶瓷高放废液固化体固化机理与浸出性能

李秋1, 朱翔1,2, 耿海宁3, 李宗刚1,2, 马浩森1,2, 陈伟1   

  1. 1.武汉理工大学硅酸盐建筑材料国家重点实验室,武汉 430070;
    2.武汉理工大学材料科学与工程学院,武汉 430070;
    3.湖北城市建设职业技术学院,武汉 430205
  • 收稿日期:2022-12-06 修订日期:2023-02-12 出版日期:2023-04-15 发布日期:2023-04-25
  • 通信作者: 陈 伟,博士,教授。E-mail:Chen.Wei@whut.edu.cn
  • 作者简介:李 秋(1975—),男,博士,研究员。主要从事先进无机胶凝材料的研究。E-mail:Qiu-Li@whut.edu.cn
  • 基金资助:
    国家自然科学基金(52072279,52272023);硅酸盐建筑材料国家重点实验室(武汉理工大学)开放基金(SYSJJ2021-12);深圳市科技计划项目协同创新专项(CJGJZD20200617102601003)

Immobilization Mechanism and Leaching Properties of Geopolymer-Based Multiphase Ceramics High-Level Radioactive Liquid Waste Form

LI Qiu1, ZHU Xiang1,2, GENG Haining3, LI Zonggang1,2, MA Haosen1,2, CHEN Wei1   

  1. 1. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China;
    2. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China;
    3. Hubei Urban Construction Vocational and Technological College, Wuhan 430205, China
  • Received:2022-12-06 Revised:2023-02-12 Online:2023-04-15 Published:2023-04-25

摘要: 高放废物中放射性核素组成复杂,而陶瓷固化存在核素选择性强的问题。为实现同时固化裂变产物及锕系核素的目的,基于可陶瓷化地聚合物设计原理,将模拟高放废液与偏高岭土、矿粉、硅灰、纳米氧化锆混合后,加入模数为1.5的钾水玻璃作为激发剂制备高放废液多相陶瓷固化基材,该基材在常温下成型硬化后,再以1 100 ℃高温热处理方式转化为地聚合物基多相陶瓷高放废液固化体。采用静态浸出方法研究固化体的抗浸出性能,同时采用XRD、SEM-EDS、XPS等测试技术探究地聚合物陶瓷化机制、核素固化机理及Ce元素氧化价态。结果表明,该固化基材在固化模拟核素时,以化学形式与物理形式两种方式同时固化:一是大量进入烧结形成的白榴石(立方)、氧化锆(四方)、锆英石晶格或形成陶瓷相;二是少量被玻璃相包裹。其中Cs、Sr均匀分布,Ce、Nd在玻璃相中富集。该固化基材在同时固化不同价态与离子半径的核素时具有优异的抗浸出性能,Cs、Sr的28 d归一化元素浸出率低至10-2 g/(m2·d),Ce、Nd的28 d归一化元素浸出率低至10-4~10-5 g/(m2·d)。本文有望提供一种工艺简单,并结合水泥、玻璃、陶瓷固化方法为一体,可同时固化多种核素的高放废物固化体设计与制备方法,为高放废物固化提供新思路。

关键词: 地聚合物, 浸出率, 多相陶瓷, 高放废液, 共同固化, 固化机理

Abstract: The composition of radionuclide in high-level radioactive waste is complex resulting in an issue of strong selectivity in ceramics solidification. In this study, a novel method was proposed to simultaneously immobilize fission products and actinides in a simple process. Based on the ceramizable geopolymer design theory, a high-level radioactive liquid waste multiphase ceramics-based form was prepared by mixing simulated high-level radioactive liquid waste with metakaolin, slag, silica fume and nano-zirconia as main raw material and 1.5-modulus potassium water glass as activator. After mixing of high-level radioactive liquid waste, raw materials and activator, and curing at room temperature for 7 d, the hardened cement waste form was transformed into a geopolymer-based multiphase ceramics high-level radioactive liquid waste form by heat treatment at 1 100 ℃. The leaching resistance properties of waste form were tested by static leaching method. XRD, SEM-EDS, XPS and other analytical techniques were employed to explore the mechanism of geopolymer ceramization conversion process, nuclide immobilization mechanism and Ce element oxidation status. The results show that the immobilization mechanisms of simulated nuclides are both chemical and physical forms. Large amounts of the simulated nuclide transfer into the crystal structure of leucite (cubic), zirconia (cubic), zircon lattice or form ceramic phases. Small amounts of nuclide are wrapped in glass phases. Cs and Sr are uniformly distributed, and Ce and Nd are enriched in the glass phase. Leaching results show that the geopolymer-based multiphase ceramics high-level radioactive liquid waste form has excellent leaching resistance property for immobilizing simulated nuclide of various valences and radii. The 28 d normalized element leaching rates of Cs and Sr are 10-2g/(m2·d), and those of Nd and Ce are 10-4~10-5 g/(m2·d). This paper provides a design and preparation method of high-level radioactive waste form that can simultaneously solidify multiple nuclide by combining cement, glass and ceramics solidification methods with simple process, which casts a new light on the effective solidification of high-level radioactive waste.

Key words: geopolymer, leaching rate, multiphase ceramics, high-level radioactive liquid waste, simultaneous solidification, immobilization mechanism

中图分类号: