硅酸盐通报 ›› 2026, Vol. 45 ›› Issue (1): 92-102.DOI: 10.16552/j.cnki.issn1001-1625.2025.0646
收稿日期:2025-07-03
修订日期:2025-08-09
出版日期:2026-01-20
发布日期:2026-02-10
通信作者:
俞海,博士,副教授。E-mail:yuhai1212@126.com
作者简介:安仰壮(2000—),男,硕士研究生。主要从事工程材料方面的研究。E-mail:18863788015@163.com
基金资助:
AN Yangzhuang(
), YU Hai(
), LIU Changgeng
Received:2025-07-03
Revised:2025-08-09
Published:2026-01-20
Online:2026-02-10
摘要:
为研究玄武岩纤维泡沫混凝土的压缩损伤演化规律,本文通过准静态压缩试验,利用数字图像相关技术进行全场应变分析,探讨了基体密度(600~1 200 kg/m3)和玄武岩纤维体积掺量(0%~0.5%)对玄武岩纤维泡沫混凝土力学性能及损伤行为的影响。结果表明,玄武岩纤维体积掺量为0.3%或0.4%时,玄武岩纤维泡沫混凝土的极限抗压强度提升效果最佳。玄武岩纤维泡沫混凝土的压缩过程可分为压密阶段、线弹性阶段、塑性阶段及破坏阶段。同时,本研究基于数字图像相关技术获取的全场、全程应变数据定义了损伤程度因子与损伤局部化系数,对材料损伤程度与局部化行为进行了定量表征与分析。玄武岩纤维的加入可以有效提高玄武岩纤维泡沫混凝土的起始损伤荷载,有效延缓损伤发展进程,并且降低损伤局部化程度,使材料破坏模式有所改变。
中图分类号:
安仰壮, 俞海, 刘昌庚. 基于数字图像相关的玄武岩纤维泡沫混凝土压缩损伤研究[J]. 硅酸盐通报, 2026, 45(1): 92-102.
AN Yangzhuang, YU Hai, LIU Changgeng. Compressive Damage of Basalt Fiber Reinforced Foam Concrete Based on Digital Image Correlation[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 92-102.
| Cement | Specific surface area/(m2·kg-1) | Setting time/min | Flexural strength/MPa | Compressive strength/MPa | |||
|---|---|---|---|---|---|---|---|
| Initial setting | Final setting | 3 d | 28 d | 3 d | 28 d | ||
| P·O 42.5 | 340 | 60 | 300 | 5.5 | 9.5 | 30 | 50 |
表1 水泥的基本参数
Table 1 Basic parameters of cement
| Cement | Specific surface area/(m2·kg-1) | Setting time/min | Flexural strength/MPa | Compressive strength/MPa | |||
|---|---|---|---|---|---|---|---|
| Initial setting | Final setting | 3 d | 28 d | 3 d | 28 d | ||
| P·O 42.5 | 340 | 60 | 300 | 5.5 | 9.5 | 30 | 50 |
| Material type | Length/mm | Elongation/% | Density/(kg·m-3) | Elastic modulus/GPa | Tensile strength/MPa |
|---|---|---|---|---|---|
| Basalt fiber | 6 | 3.1 | 2 650 | 90 | 2 750 |
表2 玄武岩纤维的主要性能
Table 2 Main properties of basalt fiber
| Material type | Length/mm | Elongation/% | Density/(kg·m-3) | Elastic modulus/GPa | Tensile strength/MPa |
|---|---|---|---|---|---|
| Basalt fiber | 6 | 3.1 | 2 650 | 90 | 2 750 |
| Compressive test specimen number | |||
|---|---|---|---|
| FC-600 | FC-800 | FC-1000 | FC-1200 |
0%BF/FC-649 0.1%BF/FC-669 0.2%BF/FC-685 0.3%BF/FC-678 0.4%BF/FC-647 0.5%BF/FC-677 | 0%BF/FC-832 0.1%BF/FC-869 0.2%BF/FC-872 0.3%BF/FC-856 0.4%BF/FC-877 0.5%BF/FC-841 | 0%BF/FC-1086 0.1%BF/FC-1107 0.2%BF/FC-1067 0.3%BF/FC-1078 0.4%BF/FC-1095 0.5%BF/FC-1057 | 0%BF/FC-1174 0.1%BF/FC-1226 0.2%BF/FC-1187 0.3%BF/FC-1160 0.4%BF/FC-1201 0.5%BF/FC-1200 |
表3 玄武岩纤维泡沫混凝土试件编号汇总
Table 3 Summary of basalt fiber reinforced foam concrete specimen number
| Compressive test specimen number | |||
|---|---|---|---|
| FC-600 | FC-800 | FC-1000 | FC-1200 |
0%BF/FC-649 0.1%BF/FC-669 0.2%BF/FC-685 0.3%BF/FC-678 0.4%BF/FC-647 0.5%BF/FC-677 | 0%BF/FC-832 0.1%BF/FC-869 0.2%BF/FC-872 0.3%BF/FC-856 0.4%BF/FC-877 0.5%BF/FC-841 | 0%BF/FC-1086 0.1%BF/FC-1107 0.2%BF/FC-1067 0.3%BF/FC-1078 0.4%BF/FC-1095 0.5%BF/FC-1057 | 0%BF/FC-1174 0.1%BF/FC-1226 0.2%BF/FC-1187 0.3%BF/FC-1160 0.4%BF/FC-1201 0.5%BF/FC-1200 |
图1 不同密度及纤维体积掺量下玄武岩纤维泡沫混凝土的荷载-位移曲线
Fig.1 Load-displacement curves of basalt fiber reinforced foam concrete under different densities and fiber volume content
图2 不同密度下玄武岩纤维泡沫混凝土极限抗压强度随纤维体积掺量的变化规律
Fig.2 Variation law in ultimate compressive strength of basalt fiber reinforced foam concrete with fiber volume content under different densities
| [1] | 宋 强, 张 鹏, 鲍玖文, 等. 泡沫混凝土的研究进展与应用[J]. 硅酸盐学报, 2021, 49(2): 398-410. |
| SONG Q, ZHANG P, BAO J W, et al. Research progress and application of foam concrete[J]. Journal of the Chinese Ceramic Society, 2021, 49(2): 398-410 (in Chinese). | |
| [2] | 宋安祥, 郭远臣, 王 雪, 等. 泡沫混凝土研究新进展与应用现状[J]. 混凝土, 2018(9): 152-156. |
| SONG A X, GUO Y C, WANG X, et al. Progress in research and application of foam concrete[J]. Concrete, 2018(9): 152-156 (in Chinese). | |
| [3] | 郭毅松, 刘乐冕, 陈剑锋. 油茶粕绿色发泡剂制备泡沫混凝土的试验研究[J]. 硅酸盐通报, 2023, 42(4): 1226-1232+1241. |
| GUO Y S, LIU L M, CHEN J F. Experimental study on preparation of foam concrete by camellia meal green foaming agent[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1226-1232+1241 (in Chinese). | |
| [4] | 袁志颖, 陈 波, 陈家林, 等. 泡沫混凝土孔结构表征及其对力学性能的影响[J]. 复合材料学报, 2023, 40(7): 4117-4127. |
| YUAN Z Y, CHEN B, CHEN J L, et al. Characterization of pore structure of foamed concrete and its influence on performance[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4117-4127 (in Chinese). | |
| [5] | 周程涛, 陈 波, 高志涵. 冻融环境下泡沫混凝土的单轴压缩特性[J]. 硅酸盐通报, 2023, 42(4): 1233-1241. |
| ZHOU C T, CHEN B, GAO Z H. Uniaxial compression characteristics of foamed concrete under freeze-thaw environment[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1233-1241 (in Chinese). | |
| [6] | 陈 兵, 刘 睫. 纤维增强泡沫混凝土性能试验研究[J]. 建筑材料学报, 2010, 13(3): 286-290+340. |
| CHEN B, LIU J. Experimental research on properties of foamed concrete reinforced with polypropylene fibers[J]. Journal of Building Materials, 2010, 13(3): 286-290+340 (in Chinese). | |
| [7] | 郭寅川, 谢 波, 周利超, 等. 动态疲劳荷载下玄武岩纤维混凝土抗渗性衰减及机理研究[J]. 硅酸盐通报, 2022, 41(3): 810-817. |
| GUO Y C, XIE B, ZHOU L C, et al. Impermeability attenuation and mechanism of basalt fiber reinforced concrete under dynamic fatigue load[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(3): 810-817 (in Chinese). | |
| [8] |
FU Q, WANG Z H, PENG G, et al. Pore structure related triaxial mechanical response and strength criterion of basalt fibre-reinforced coral aggregate concrete[J]. Journal of Central South University, 2023, 30(4): 1325-1344.
DOI |
| [9] | 李曦彤, 戎泽斌, 李桢怡, 等. 玄武岩纤维混凝土国内外研究现状及发展动态分析[J]. 土木工程, 2022(6): 783-787. |
| LI X T, RONG Z B, LI Z Y, et al. Home and abroad research status and development trends of basalt fiber reinforced concrete[J]. Hans Journal of Civil Engineering, 2022(6): 783-787 (in Chinese). | |
| [10] | 赵 星, 霍冀川, 高 亚, 等. 玄武岩纤维增强泡沫混凝土性能的研究[J]. 混凝土与水泥制品, 2012(12): 54-57. |
| ZHAO X, HUO J C, GAO Y, et al. Performance study on basalt fiber reinforced foamed concrete[J]. China Concrete and Cement Products, 2012(12): 54-57 (in Chinese). | |
| [11] | 周程涛, 陈 波, 张 娟, 等. 玄武岩纤维泡沫混凝土细观结构及损伤特性[J]. 复合材料学报, 2024, 41(8): 4236-4245. |
| ZHOU C T, CHEN B, ZHANG J, et al. Microstructure and damage characteristics of basalt fiber reinforced foam concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4236-4245 (in Chinese). | |
| [12] | 李为民, 许金余. 玄武岩纤维对混凝土的增强和增韧效应[J]. 硅酸盐学报, 2008, 36(4): 476-481+486. |
| LI W M, XU J Y. Strengthening and toughening in basalt fiber-reinforced concrete[J]. Journal of the Chinese Ceramic Society, 2008, 36(4): 476-481+486 (in Chinese). | |
| [13] | 王小娟, 崔浩儒, 周宏元, 等. 玄武岩纤维增强泡沫混凝土的单轴拉伸及准静态压缩性能[J]. 复合材料学报, 2023, 40(3): 1569-1585. |
| WANG X J, CUI H R, ZHOU H Y, et al. Mechanical performance of basalt fiber reinforced foam concrete subjected to quasi-static tensile and compressive tests[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1569-1585 (in Chinese). | |
| [14] | 余振鹏, 李 群, 吴天乾, 等. 玄武岩纤维混凝土动态受压力学性能及损伤演化[J/OL]. 复合材料学报, 2025: 1-15 ( 2025-02-11) [ 2025-06-10]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=FUHE20250210001&dbname=CJFD&dbcode=CJFQ. |
| YU Z P, LI Q, WU T Q, et al. Mechanical properties and damage evolution of basalt fiber reinforced concrete under dynamic compression[J/OL]. Acta Materiae Compositae Sinica, 2025: 1-15 ( 2025-02-11) [ 2025-06-10]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=FUHE20250210001&dbname=CJFD&dbcode=CJFQ (in Chinese). | |
| [15] | 郭凌云, 陈 波, 高志涵, 等. 基于细观数值模拟的玄武岩纤维泡沫混凝土力学性能[J]. 复合材料学报, 2025, 42(4): 2302-2316. |
| GUO L Y, CHEN B, GAO Z H, et al. Mechanical properties of basalt fiber foam concrete based on microscopic numerical simulation[J]. Acta Materiae Compositae Sinica, 2025, 42(4): 2302-2316 (in Chinese). | |
| [16] | 刘 辉, 孙 锐, 周永康, 等. 基于数字图像相关技术的SLM-IN718细观表面裂纹扩展机制研究[J]. 稀有金属材料与工程, 2023, 52(10): 3433-3441. |
| LIU H, SUN R, ZHOU Y K, et al. Mesoscopic surface crack propagation mechanism study of SLM-IN718 based on digital image correlation technology[J]. Rare Metal Materials and Engineering, 2023, 52(10): 3433-3441 (in Chinese). | |
| [17] | 赵永红, 梁海华, 熊春阳, 等. 用数字图像相关技术进行岩石损伤的变形分析[J]. 岩石力学与工程学报, 2002, 21(1): 73-76. |
| ZHAO Y H, LIANG H H, XIONG C Y, et al. Deformation measurement of rock damage by digital image correlation method[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(1): 73-76 (in Chinese). | |
| [18] | 苏 勇, 张青川, 伍小平. 数字图像相关技术的一些进展[J]. 中国科学: 物理学 力学 天文学, 2018, 48(9): 29-53. |
| SU Y, ZHANG Q C, WU X P. Progress in digital image correlation method[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2018, 48(9): 29-53 (in Chinese). | |
| [19] | 王 莉, 姜世超. 动载下玄武岩纤维混凝土能量耗散特征与破坏损伤规律[J]. 硅酸盐通报, 2024, 43(2): 456-465. |
| WANG L, JIANG S C. Energy dissipation characteristics and damage pattern law of basalt fiber concrete under dynamic load[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(2): 456-465 (in Chinese). | |
| [20] |
BATOOL F, BINDIGANAVILE V. Microstructural parameters of fiber reinforced cement-based foam and their influence on compressive and thermal properties[J]. Journal of Building Engineering, 2020, 31: 101320.
DOI URL |
| [21] | 陈峰宾, 许 斌, 焦华喆, 等. 玄武岩纤维混凝土纤维分布及孔隙结构表征[J]. 中国矿业大学学报, 2021, 50(2): 273-280. |
| CHEN F B, XU B, JIAO H Z, et al. Fiber distribution and pore structure characterization of basalt fiber reinforced concrete[J]. Journal of China University of Mining & Technology, 2021, 50(2): 273-280 (in Chinese). | |
| [22] |
LIU B, GUO J H, WEN X Y, et al. Study on flexural behavior of carbon fibers reinforced coral concrete using digital image correlation[J]. Construction and Building Materials, 2020, 242: 117968.
DOI URL |
| [1] | 刘仕琪, 周紫晨, 黄修林, 曾明, 张冰, 张剑峰, 沈春华. 燃煤渣对水泥力学和水化过程的影响[J]. 硅酸盐通报, 2026, 45(1): 165-176. |
| [2] | 周宇通, 周正, 裘吕超, 鲁旷达, 徐冬梅, 张士元, 张世轩, 蹇守卫, 谭洪波. 发泡压力对超轻质硫氧镁水泥基泡沫混凝土性能的影响[J]. 硅酸盐通报, 2026, 45(1): 103-111. |
| [3] | 黄振辉, 赵菲, 常钧, 李文政, 周智. CO2养护椰壳炭再生混凝土的力学性能和固碳能力[J]. 硅酸盐通报, 2026, 45(1): 156-164. |
| [4] | 王文胜, 吕海龙, 马江涛, 刘琦, 聂晓东. 珊瑚混凝土基础力学性能及工程应用研究现状[J]. 硅酸盐通报, 2026, 45(1): 1-20. |
| [5] | 唐咸远, 任博文, 胡冰倩, 柳大成, 冯美杰. 超早强环保型钢渣微粉UHPC制备及形成机理[J]. 硅酸盐通报, 2026, 45(1): 191-201. |
| [6] | 梁新星, 张敬申, 王朝胜, 梁李归祖, 刘泽, 张通, 朱颖灿. 预养护对硅钙渣复合蒸压加气混凝土宏观性能与微观结构的影响[J]. 硅酸盐通报, 2026, 45(1): 40-46. |
| [7] | 姜德民, 胡思雨, 康红龙, 李御锦, 候宇翔. 改性处理对3D打印稻草纤维水泥基复合材料性能的影响[J]. 硅酸盐通报, 2026, 45(1): 47-57. |
| [8] | 张争奇, 刘祉鑫, 芮照诚, 石杰荣, 杨新红. 地聚物稳定建筑固废再生集料性能研究[J]. 硅酸盐通报, 2025, 44(9): 3347-3354. |
| [9] | 王倩倩, 戴航, 王立川, 张春瑜, 李利平, 王海彦, 张京京. 高氯盐加速侵蚀下水泥-水玻璃双液浆结石体耐久性研究[J]. 硅酸盐通报, 2025, 44(9): 3137-3146. |
| [10] | 义启贵, 湛缕金, 刘祥, 许瑞天, 梁莹, 陈宗平. 碳酸氢钠溶液碳化:一种提高再生骨料混凝土性能的新方法[J]. 硅酸盐通报, 2025, 44(9): 3227-3237. |
| [11] | 朱子龙, 陈培冲, 廖洁, 杨旋, 赵德强, 曲良辰, 王桂明, 沈卫国. 砂砾岩机制砂粒形对混凝土性能的影响[J]. 硅酸盐通报, 2025, 44(9): 3168-3177. |
| [12] | 王磊, 饶斌, 赵燕茹, 许有俊, 陈明. 基于DIC高温下混凝土断裂性能研究[J]. 硅酸盐通报, 2025, 44(9): 3196-3206. |
| [13] | 刘佳钰, 高誉, 刘泽, 温帅云, 王栋民, 危鹏, 张春辉, 朱正江, 李清亚. 水泥固化飞灰-水泥复合胶凝材料的性能与微观结构研究[J]. 硅酸盐通报, 2025, 44(9): 3272-3279. |
| [14] | 张小龙, 王伟, 姚爱军, 王朝晖, 冯希浩, 王杰. 低温低压养护条件下复合胶凝材料性能研究[J]. 硅酸盐通报, 2025, 44(9): 3295-3304. |
| [15] | 余洁歆, 朱艺婷, 庄旭, 陈玉霜, 张广达, 许莉. 以尾矿砂为骨料的绿色工程水泥基复合材料力学性能研究[J]. 硅酸盐通报, 2025, 44(9): 3337-3346. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||