硅酸盐通报 ›› 2026, Vol. 45 ›› Issue (1): 47-57.DOI: 10.16552/j.cnki.issn1001-1625.2025.0622
收稿日期:2025-06-25
修订日期:2025-08-29
出版日期:2026-01-20
发布日期:2026-02-10
通信作者:
胡思雨,硕士研究生。E-mail: a19591651006@163.com
作者简介:姜德民(1968—),男,博士,教授。主要从事植物纤维保温混凝土的研究。E-mail: jdm2004@126.com
JIANG Demin(
), HU Siyu(
), KANG Honglong, LI Yujin, HOU Yuxiang
Received:2025-06-25
Revised:2025-08-29
Published:2026-01-20
Online:2026-02-10
摘要:
为探索植物纤维在3D打印水泥基材料领域中的应用,本研究以稻草纤维为外掺纤维,探讨了沸煮处理和高锰酸钾溶液处理对稻草纤维的改性效果,以及两种改性方法对3D打印稻草纤维水泥基复合材料性能的影响。结果表明,沸煮处理后稻草纤维表面变得干净且粗糙,但吸水率增加;高锰酸钾溶液处理后稻草纤维吸水率降低,同时稻草纤维表面粗糙度和结晶度增加。两种改性方法均显著提升了3D打印稻草纤维水泥基复合材料的力学性能、层间结合强度、条间结合强度,其中高锰酸钾改性效果更优。本研究为3D打印稻草纤维水泥基材料的设计和性能优化提供了新思路,扩大了稻草纤维在建筑领域的应用范围。
中图分类号:
姜德民, 胡思雨, 康红龙, 李御锦, 候宇翔. 改性处理对3D打印稻草纤维水泥基复合材料性能的影响[J]. 硅酸盐通报, 2026, 45(1): 47-57.
JIANG Demin, HU Siyu, KANG Honglong, LI Yujin, HOU Yuxiang. Effect of Modification on Properties of 3D Printing Rice Straw Fiber Cement-Based Composite[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 47-57.
| Material | Mass fraction/% | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| CaO | SiO2 | Al2O3 | Fe2O3 | TiO2 | MgO | SO3 | Na2O | Loss on ignition | |
| OPC | 62.38 | 25.52 | 6.15 | 3.27 | 0.57 | 1.54 | 1.65 | 0.21 | 2.87 |
| FA | 5.60 | 43.00 | 23.00 | 2.50 | — | 0.95 | 0.80 | — | 3.10 |
| SF | 0.60 | 86.57 | 0.96 | 0.56 | — | 0.34 | — | 0.99 | 3.92 |
表1 水泥及矿物掺合料的主要化学组成
Table 1 Main chemical composition of cement and mineral admixtures
| Material | Mass fraction/% | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| CaO | SiO2 | Al2O3 | Fe2O3 | TiO2 | MgO | SO3 | Na2O | Loss on ignition | |
| OPC | 62.38 | 25.52 | 6.15 | 3.27 | 0.57 | 1.54 | 1.65 | 0.21 | 2.87 |
| FA | 5.60 | 43.00 | 23.00 | 2.50 | — | 0.95 | 0.80 | — | 3.10 |
| SF | 0.60 | 86.57 | 0.96 | 0.56 | — | 0.34 | — | 0.99 | 3.92 |
| Item | Mass fraction/% | |||||
|---|---|---|---|---|---|---|
| 4.75 mm | 2.36 mm | 1.18 mm | 0.60 mm | 0.30 mm | 0.15 mm | |
| Divide sieve surplus | 5.4 | 0.9 | 3.8 | 10.6 | 36.5 | 61.4 |
| Cumulative sieve residue | 5.4 | 6.3 | 10.1 | 20.7 | 47.1 | 97.9 |
表2 河砂的颗粒级配
Table 2 Particle grading of sand
| Item | Mass fraction/% | |||||
|---|---|---|---|---|---|---|
| 4.75 mm | 2.36 mm | 1.18 mm | 0.60 mm | 0.30 mm | 0.15 mm | |
| Divide sieve surplus | 5.4 | 0.9 | 3.8 | 10.6 | 36.5 | 61.4 |
| Cumulative sieve residue | 5.4 | 6.3 | 10.1 | 20.7 | 47.1 | 97.9 |
| Composition | Moisture | Ash | Holocellulose | Cellulose | Pentosans | Lignin |
|---|---|---|---|---|---|---|
| Mass fraction /% | 5.06 | 15.35 | 62.41 | 39.27 | 17.93 | 17.35 |
表3 稻草纤维的化学组成
Table 3 Chemical composition of rice straw fiber
| Composition | Moisture | Ash | Holocellulose | Cellulose | Pentosans | Lignin |
|---|---|---|---|---|---|---|
| Mass fraction /% | 5.06 | 15.35 | 62.41 | 39.27 | 17.93 | 17.35 |
| Composition | OPC | FA | SF | Water | Sand | Fiber | HPMC | Water reducer |
|---|---|---|---|---|---|---|---|---|
| Mix proportion/(g·L-1) | 976 | 260 | 65 | 781 | 1 302 | 45 | 1 | 1 |
表4 3D打印稻草纤维水泥基复合材料配合比
Table 4 Mix proportion of 3D printing rice straw fiber cement-based composite materials
| Composition | OPC | FA | SF | Water | Sand | Fiber | HPMC | Water reducer |
|---|---|---|---|---|---|---|---|---|
| Mix proportion/(g·L-1) | 976 | 260 | 65 | 781 | 1 302 | 45 | 1 | 1 |
| [1] | SAKKA FEL, HAMZEH F. 3D concrete printing in the service of lean construction[C]// Annual Conference of the International Group for Lean Construction. Heraklion, Greece, 2017: 781-788. |
| [2] |
WOLFS R J M, BOS F P, SALET T A M. Hardened properties of 3D printed concrete: the influence of process parameters on interlayer adhesion[J]. Cement and Concrete Research, 2019, 119: 132-140.
DOI URL |
| [3] |
DE SCHUTTER G, LESAGE K, MECHTCHERINE V, et al. Vision of 3D printing with concrete: technical, economic and environmental potentials[J]. Cement and Concrete Research, 2018, 112: 25-36.
DOI URL |
| [4] | 张大旺, 许晓光, 李辉. 3D打印混凝土的长期性能研究进展[J]. 材料导报, 2025, 39(13): 118-130. |
| ZHANG D W, XU X G, LI H. Research progress on long-term performance of 3D printed concrete[J]. Materials Reports, 2025, 39(13): 118-130 (in Chinese). | |
| [5] | 郝鹏宇, 王振地, 王玲. 材料组成对3D打印水泥基材料早龄期收缩的影响[J]. 硅酸盐学报, 2025, 53(1): 84-94. |
| HAO P Y, WANG Z D, WANG L. Effect of material composition on early age shrinkage of 3D printed cement-based materials[J]. Journal of the Chinese Ceramic Society, 2025, 53(1): 84-94 (in Chinese). | |
| [6] |
MOELICH G M, KRUGER P J, COMBRINCK R. Mitigating early age cracking in 3D printed concrete using fibres, superabsorbent polymers, shrinkage reducing admixtures, B-CSA cement and curing measures[J]. Cement and Concrete Research, 2022, 159: 106862.
DOI URL |
| [7] | 马世浩. 建筑工程中3D打印混凝土技术应用与性能优化[J]. 新城建科技, 2025(5): 7-9. |
| MA S H. Application and performance optimization of 3D printing concrete technology in building engineering[J]. Neotype Urban Construction Technology, 2025(5): 7-9 (in Chinese). | |
| [8] | 赵晞炀, 李 敏. 聚丙烯纤维对3D打印水泥基材料性能影响研究[J]. 散装水泥, 2025(2): 254-256. |
| ZHAO X Y, LI M. Study on the influence of polypropylene fiber on the properties of cement-based materials for 3D printing[J]. Bulk Cement, 2025(2): 254-256 (in Chinese). | |
| [9] | 裴 强, 张禄玺, 崔 迪, 等. 玄武岩纤维对3D打印混凝土力学性能的影响[J]. 自然灾害学报, 2024, 33(5): 199-209. |
| PEI Q, ZHANG L X, CUI D, et al. Effect of basalt fibers on mechanical properties of 3D printed concrete[J]. Journal of Natural Disasters, 2024, 33(5): 199-209 (in Chinese). | |
| [10] | 张 莉, 梁多平, 侯理达. 植物纤维/聚乳酸复合材料的研究进展[J]. 塑料工业, 2023, 51(增刊1): 22-28. |
| ZHANG L, LIANG D P, HOU L D. Research progress of plant fiber/polylactic acid composites[J]. China Plastics Industry, 2023, 51(supplement 1): 22-28 (in Chinese). | |
| [11] | 张志平. 绿色建筑材料在土木工程中的应用研究[J]. 城市建设理论研究, 2024(21): 187-189. |
| ZHANG Z P. Study on the application of green building materials in civil engineering[J]. Theoretical Research in Urban Construction, 2024(21): 187-189 (in Chinese). | |
| [12] |
SEGAL, GREELY J J, MARTIN JR A E, et al. An expirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer[J]. Textile Research Journal, 1959, 29(10): 786-794.
DOI URL |
| [13] | 张 宇. 3D打印水泥基材料的设计、制备与性能研究[D]. 南京: 东南大学, 2021. |
| ZHANG Y. Study on design, preparation and performance of 3D printed cement-based materials[D]. Nanjing: Southeast University, 2021 (in Chinese). | |
| [14] |
ALI-BOUCETTA T, AYAT A, LAIFA W, et al. Treatment of date palm fibres mesh: influence on the rheological and mechanical properties of fibre-cement composites[J]. Construction and Building Materials, 2021, 273: 121056.
DOI URL |
| [15] |
KAVITHA S A, PRIYA R K, ARUNACHALAM K P, et al. Experimental investigation on strengthening of Zea mays root fibres for biodegradable composite materials using potassium permanganate treatment[J]. Scientific Reports, 2024, 14(1): 12754.
DOI PMID |
| [16] |
PROME F S, HOSSAIN M F, RANA M S, et al. Different chemical treatments of natural fiber composites and their impact on water absorption behavior and mechanical strength[J]. Hybrid Advances, 2025, 8: 100379.
DOI URL |
| [17] | MALLU L L, HOU T C. Effects of boiling and fiber length on the resistivity of coconut-fiber-reinforced mortar[J]. Case Studies in Construction Materials, 2024, 20: e03177. |
| [18] |
BUI H, SEBAIBI N, BOUTOUIL M, et al. Determination and review of physical and mechanical properties of raw and treated coconut fibers for their recycling in construction materials[J]. Fibers, 2020, 8(6): 37.
DOI URL |
| [19] | 张素风, 邓婷婷, 李 楠, 等. 阔叶木浆高锰酸钾氧化制备纤维素纳米纤维[J]. 中国造纸学报, 2024, 39(3): 78-86. |
| ZHANG S F, DENG T T, LI N, et al. Preparation of cellulose nanofibrils by oxidation of potassium permanganate from hardwood pulp[J]. Transactions of China Pulp and Paper, 2024, 39(3): 78-86 (in Chinese). | |
| [20] |
KNEŽEVIĆ M, KRAMAR A, HAJNRIH T, et al. Influence of potassium permanganate oxidation on structure and properties of cotton[J]. Journal of Natural Fibers, 2022, 19(2): 403-415.
DOI URL |
| [21] |
JIANG D M, JIANG D, LV S C, et al. Effect of flame-retardant rice straw fibers on properties of fiber cement-based composites at high temperatures[J]. Journal of Building Engineering, 2021, 44: 102923.
DOI URL |
| [22] | 安鹏辉. 改性稻草纤维保温混凝土高温下的性能研究[D]. 北京: 北方工业大学, 2020. |
| AN P H. Study on performance of modified straw fiber thermal insulation concrete at high temperature[D]. Beijing: North China University of Technology, 2020 (in Chinese). | |
| [23] |
IMOISILI P E, JEN T C. Mechanical and water absorption behaviour of potassium permanganate (KMnO4) treated plantain (Musa Paradisiacal) fibre/epoxy bio-composites[J]. Journal of Materials Research and Technology, 2020, 9(4): 8705-8713.
DOI URL |
| [24] |
ABISHA M, PRIYA R K, ARUNACHALAM K P, et al. Biodegradable green composites: effects of potassium permanganate (KMnO4) treatment on thermal, mechanical, and morphological behavior of butea parviflora (BP) fibers[J]. Polymers, 2023, 15(9): 2197.
DOI URL |
| [25] | 姜德民, 吕树辰, 姜 迪, 等. 丙烯酸乳液改性麦秸纤维及其对水泥基材料性能的影响[J]. 混凝土与水泥制品, 2023(7): 51-56. |
| JIANG D M, LYU S C, JIANG D, et al. Modification of wheat straw fiber with acrylic emulsion and its influence on properties of cement-based materials[J]. China Concrete and Cement Products, 2023(7): 51-56 (in Chinese). | |
| [26] |
RAMACHANDRAN A, RANGAPPA S M, KUSHVAHA V, et al. Modification of fibers and matrices in natural fiber reinforced polymer composites: a comprehensive review[J]. Macromolecular Rapid Communications, 2022, 43(17): 2100862.
DOI URL |
| [27] |
KOCH K, BHUSHAN B, BARTHLOTT W. Diversity of structure, morphology and wetting of plant surfaces[J]. Soft Matter, 2008, 4(10): 1943.
DOI URL |
| [28] | 于日志, 洪浩群, 李雪松, 等. 木粉预处理对PP/WF复合材料力学性能的影响[J]. 纤维素科学与技术, 2023, 31(3): 19-25. |
| YU R Z, HONG H Q, LI X S, et al. Effect of wood flours pretreatment on the mechanical properties of polypropylene/wood flours composites[J]. Journal of Cellulose Science and Technology, 2023, 31(3): 19-25 (in Chinese). | |
| [29] | 潘宜健, 王 政, 刘雨时. 预处理椰壳纤维对水泥基材料性能的影响研究[J]. 混凝土与水泥制品, 2022(5): 61-66. |
| PAN Y J, WANG Z, LIU Y S. Study on the influence of pretreated coir fiber on the properties of cement-based materials[J]. China Concrete and Cement Products, 2022(5): 61-66 (in Chinese). | |
| [30] |
ALI B, HAWREEN A, KAHLA NBEN, et al. A critical review on the utilization of coir (coconut fiber) in cementitious materials[J]. Construction and Building Materials, 2022, 351: 128957.
DOI URL |
| [31] | MAHZABIN M S, HOCK L J, KANG L S, et al. Performance of mechanical behavior of kenaf fibre reinforced foamed composite[C]// Aip Conference Proceedings. Penang, Malaysia: AIP Publishing LLC, 2017, 1892(1): 020035. |
| [32] |
RABMA S, NARKSITIPAN S, JAITANONG N. Coconut fiber reinforced cement-based composites[J]. Solid State Phenomena, 2020, 302: 101-106.
DOI URL |
| [1] | 安仰壮, 俞海, 刘昌庚. 基于数字图像相关的玄武岩纤维泡沫混凝土压缩损伤研究[J]. 硅酸盐通报, 2026, 45(1): 92-102. |
| [2] | 刘仕琪, 周紫晨, 黄修林, 曾明, 张冰, 张剑峰, 沈春华. 燃煤渣对水泥力学和水化过程的影响[J]. 硅酸盐通报, 2026, 45(1): 165-176. |
| [3] | 黄振辉, 赵菲, 常钧, 李文政, 周智. CO2养护椰壳炭再生混凝土的力学性能和固碳能力[J]. 硅酸盐通报, 2026, 45(1): 156-164. |
| [4] | 王文胜, 吕海龙, 马江涛, 刘琦, 聂晓东. 珊瑚混凝土基础力学性能及工程应用研究现状[J]. 硅酸盐通报, 2026, 45(1): 1-20. |
| [5] | 唐咸远, 任博文, 胡冰倩, 柳大成, 冯美杰. 超早强环保型钢渣微粉UHPC制备及形成机理[J]. 硅酸盐通报, 2026, 45(1): 191-201. |
| [6] | 岳鹏飞, 郭思标, 丁秀娟, 王玉松, 王大周, 胡悦, 张蓉蓉, 章纲, 丁金孟. 粉煤灰-矿渣-赤泥基胶凝材料固化土强度和微观机理研究[J]. 硅酸盐通报, 2026, 45(1): 336-345. |
| [7] | 梁新星, 张敬申, 王朝胜, 梁李归祖, 刘泽, 张通, 朱颖灿. 预养护对硅钙渣复合蒸压加气混凝土宏观性能与微观结构的影响[J]. 硅酸盐通报, 2026, 45(1): 40-46. |
| [8] | 张争奇, 刘祉鑫, 芮照诚, 石杰荣, 杨新红. 地聚物稳定建筑固废再生集料性能研究[J]. 硅酸盐通报, 2025, 44(9): 3347-3354. |
| [9] | 王倩倩, 戴航, 王立川, 张春瑜, 李利平, 王海彦, 张京京. 高氯盐加速侵蚀下水泥-水玻璃双液浆结石体耐久性研究[J]. 硅酸盐通报, 2025, 44(9): 3137-3146. |
| [10] | 义启贵, 湛缕金, 刘祥, 许瑞天, 梁莹, 陈宗平. 碳酸氢钠溶液碳化:一种提高再生骨料混凝土性能的新方法[J]. 硅酸盐通报, 2025, 44(9): 3227-3237. |
| [11] | 张书峰, 王蕾, 徐世龙, 蔡佳成, 陈锦帆, 黄继志. 环氧树脂各组分对环氧树脂砂浆的性能影响研究[J]. 硅酸盐通报, 2025, 44(9): 3156-3167. |
| [12] | 朱子龙, 陈培冲, 廖洁, 杨旋, 赵德强, 曲良辰, 王桂明, 沈卫国. 砂砾岩机制砂粒形对混凝土性能的影响[J]. 硅酸盐通报, 2025, 44(9): 3168-3177. |
| [13] | 刘佳钰, 高誉, 刘泽, 温帅云, 王栋民, 危鹏, 张春辉, 朱正江, 李清亚. 水泥固化飞灰-水泥复合胶凝材料的性能与微观结构研究[J]. 硅酸盐通报, 2025, 44(9): 3272-3279. |
| [14] | 张小龙, 王伟, 姚爱军, 王朝晖, 冯希浩, 王杰. 低温低压养护条件下复合胶凝材料性能研究[J]. 硅酸盐通报, 2025, 44(9): 3295-3304. |
| [15] | 余洁歆, 朱艺婷, 庄旭, 陈玉霜, 张广达, 许莉. 以尾矿砂为骨料的绿色工程水泥基复合材料力学性能研究[J]. 硅酸盐通报, 2025, 44(9): 3337-3346. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||