[1] 张永成. 注浆技术[M]. 北京: 煤炭工业出版社, 2012. ZHANG Y C. Grouting technology[M]. Beijing: China Coal Industry Publishing House, 2012 (in Chinese). [2] LI S C, LIU R T, ZHANG Q S, et al. Protection against water or mud inrush in tunnels by grouting: a review[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(5): 753-766. [3] 刘红彬, 唐伟奇, 肖凯璐, 等. 水泥基注浆材料的研究进展[J]. 混凝土, 2016(3): 71-75. LIU H B, TANG W Q, XIAO K L, et al. Research progress of cement-based grouting materials[J]. Concrete, 2016(3): 71-75 (in Chinese). [4] 路 阳, 何小芳, 吴永豪, 等. 煤矿井下新型水泥基注浆材料的应用研究进展[J]. 硅酸盐通报, 2014, 33(1): 97-102. LU Y, HE X F, WU Y H, et al. Research progress on application of new cement-based grouting materials in coal mine underground[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(1): 97-102 (in Chinese). [5] 方 刚, 梁向阳, 黄 浩, 等. 巴拉素井田煤层富水机理与注浆堵水技术[J]. 煤炭学报, 2019, 44(8): 2470-2483. FANG G, LIANG X Y, HUANG H, et al. Water-rich mechanism of coal seam and grouting and blocking water technology in Balasu mine feild[J]. Journal of China Coal Society, 2019, 44(8): 2470-2483 (in Chinese). [6] YANG Z P, ZHANG X F, LIU X, et al. Flexible and stretchable polyurethane/waterglass grouting material[J]. Construction and Building Materials, 2017, 138: 240-246. [7] 王燕峰, 刘松辉, 韩 康, 等. 超细碳酸钙对硫铝酸盐水泥基双液注浆材料性能的影响[J]. 硅酸盐通报, 2021, 40(2): 368-376. WANG Y F, LIU S H, HAN K, et al. Effect of superfine CaCO3 on properties of sulphoaluminate cement-based double fluid grouting material[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(2): 368-376 (in Chinese). [8] 董小娟. 工业固废基防治水注浆材料的制备方法及研究[J]. 煤炭与化工, 2023, 46(11): 94-96+110. DONG X J. Preparation method and research of industrial solid waste based grouting material for water prevention and control[J]. Coal and Chemical Industry, 2023, 46(11): 94-96+110 (in Chinese). [9] 郭凌志, 周 梅, 王丽娟, 等. 煤基固废地聚物注浆材料的制备及性能[J]. 建筑材料学报, 2022, 25(10): 1092-1100. GUO L Z, ZHOU M, WANG L J, et al. Preparation and properties of coal-based solid waste geopolymer grouting materials[J]. Journal of Building Materials, 2022, 25(10): 1092-1100 (in Chinese). [10] CHO B, CHOI H. Physical and chemical properties of concrete using GGBFS-KR slag-gypsum binder[J]. Construction and Building Materials, 2016, 123: 436-443. [11] 王红喜, 张高展, 丁庆军, 等. 碱激发-工业废渣双液注浆材料性能研究[J]. 建筑材料学报, 2007, 10(3): 374-378. WANG H X, ZHANG G Z, DING Q J, et al. Research on the performance of double solution grouting material with alkali-activated industry waste slag[J]. Journal of Building Materials, 2007, 10(3): 374-378 (in Chinese). [12] ZHANG J, LI S C, LI Z F, et al. Properties of fresh and hardened geopolymer-based grouts[J]. Ceramics-Silikty, 2019, 63(2): 164-173. [13] XU D, NI W, WANG Q H, et al. Ammonia-soda residue and metallurgical slags from iron and steel industries as cementitious materials for clinker-free concretes[J]. Journal of Cleaner Production, 2021, 307: 127262. [14] WANG X, NI W, LI J J, et al. Carbonation of steel slag and gypsum for building materials and associated reaction mechanisms[J]. Cement and Concrete Research, 2019, 125: 105893. [15] 崔孝炜, 倪 文, 狄燕清. 钢渣矿渣基全固废胶凝材料的化学活化[J]. 硅酸盐通报, 2018, 37(4): 1411-1417. CUI X W, NI W, DI Y Q. Chemical activation of cementitious materials with all solid waste based of steel slag and blast furnace slag[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(4): 1411-1417 (in Chinese). [16] 马旭明, 倪 文, 刘 轩. 钢渣粉性能优化及制备无熟料混凝土的试验研究[J]. 材料导报, 2016, 30(16): 135-140. MA X M, NI W, LIU X. Experimental study on performance optimization of steel slag powder and preparation of non-clinker concrete[J]. Materials Reports, 2016, 30(16): 135-140 (in Chinese). [17] REN C F, WANG J X, DUAN K R, et al. Effects of steel slag on the hydration process of solid waste-based cementitious materials[J]. Materials, 2024, 17(9): 1999. [18] 杜 野, 裴向军, 黄润秋, 等. 黏度时变性注浆材料流动特性与应用研究[J]. 岩土力学, 2017, 38(12): 3498-3504. DU Y, PEI X J, HUANG R Q, et al. Study on flow characteristics and application of viscosity time-varying grouting material[J]. Rock and Soil Mechanics, 2017, 38(12): 3498-3504 (in Chinese). [19] 陈 伟, 余匡迪, 袁 波. 聚合硫酸铝调控硫酸盐激发尾砂充填材料工作性能与微观结构的研究[J]. 硅酸盐通报, 2020, 39(6): 1822-1827+1834. CHEN W, YU K D, YUAN B. Controlling the workability and microstructure of sulfate activated tailings based backfills using polyaluminum sulfate[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(6): 1822-1827+1834 (in Chinese). [20] GRUSKOVNJAK A, LOTHENBACH B, WINNEFELD F, et al. Hydration mechanisms of super sulphated slag cement[J]. Cement and Concrete Research, 2008, 38(7): 983-992. [21] MATSCHEI T, BELLMANN F, STARK J. Hydration behaviour of sulphate-activated slag cements[J]. Advances in Cement Research, 2005, 17(4): 167-178. [22] 刘 新, 冯 攀, 沈叙言, 等. 水泥水化产物: 水化硅酸钙(C-S-H)的研究进展[J]. 材料导报, 2021, 35(9): 9157-9167. LIU X, FENG P, SHEN X Y, et al. Advances in the understanding of cement hydrate: calcium silicate hydrate (C-S-H)[J]. Materials Reports, 2021, 35(9): 9157-9167 (in Chinese). [23] ZHANG Z H, LI L F, MA X, et al. Compositional, microstructural and mechanical properties of ambient condition cured alkali-activated cement[J]. Construction and Building Materials, 2016, 113: 237-245. |