[1] DUAN S Y, LIAO H Q, MA Z B, et al. The relevance of ultrafine fly ash properties and mechanical properties in its fly ash-cement gelation blocks via static pressure forming[J]. Construction and Building Materials, 2018, 186: 1064-1071. [2] ANTHONY E J, BULEWICZ E M, DUDEK K, et al. The long term behaviour of CFBC ash-water systems[J]. Waste Management, 2002, 22(1): 99-111. [3] ZHENG D P, WANG D M, LI D L, et al. Study of high volume circulating fluidized bed fly ash on rheological properties of the resulting cement paste[J]. Construction and Building Materials, 2017, 135: 86-93. [4] GLINICKI M A, JÓŹWIAK-NIEDZŹWIEDZKA D, DBROWSKI M. The influence of fluidized bed combustion fly ash on the phase composition and microstructure of cement paste[J]. Materials, 2019, 12(17): 2838. [5] 李 鹏, 武建芳, 吴璟菲, 等. 超细固硫灰的制备与性能分析[J]. 洁净煤技术, 2016, 22(4): 6-10. LI P, WU J F, WU J F, et al. Preparation and performance analysis of ultrafine desulphurization ash[J]. Clean Coal Technology, 2016, 22(4): 6-10 (in Chinese). [6] CHI M, HUANG R. Effect of circulating fluidized bed combustion ash on the properties of roller compacted concrete[J]. Cement and Concrete Composites, 2014, 45: 148-156. [7] 徐冬杰, 单俊鸿, 赵常齐, 等. 循环流化床(CFB)飞灰与粉煤灰的性能对比研究[J]. 粉煤灰综合利用, 2022, 36(3): 105-108. XU D J, SHAN J H, ZHAO C Q, et al. Study on the comparison of the performance of circulating fluidized bed (CFB) fly ash and fly ash[J]. Fly Ash Comprehensive Utilization, 2022, 36(3): 105-108 (in Chinese). [8] NETO A A M, CINCOTTO M A, REPETTE W. Mechanical properties, drying and autogenous shrinkage of blast furnace slag activated with hydrated lime and gypsum[J]. Cement and Concrete Composites, 2010, 32(4): 312-318. [9] ESCALANTE-GARCÍA J I, BAZALDÚA-MEDELLÍN M E, FUENTES A F, et al. Early and late hydration of supersulphated cements of blast furnace slag with fluorgypsum[J]. Materiales de Construcción, 2015, 65(317): e043. [10] 栗东平, 平浩岩, 张凯帆, 等. 钢渣-矿渣-脱硫石膏复合胶凝材料的制备及水化机理[J]. 科学技术与工程, 2023, 23(6): 2558-2566. LI D P, PING H Y, ZHANG K F, et al. Preparation and hydration mechanism of composite cementitious materials containing steel slag, slag and desulfurization gypsum[J]. Science Technology and Engineering, 2023, 23(6): 2558-2566 (in Chinese). [11] 曾 亮, 胡 彪, 石 齐. 石膏矿渣基多元固废低碳胶凝材料的制备及水化性能[J]. 有色金属(冶炼部分), 2024(9): 154-163. ZENG L, HU B, SHI Q. Preparation and hydration properties of multi-component solid waste low carbon cementitious materials based on gypsum and slag[J]. Nonferrous Metals (Extractive Metallurgy), 2024(9): 154-163 (in Chinese). [12] 彭 饶, 陈 伟, 李 秋, 等. 硫酸钠激发尾矿充填材料的性能与微观结构[J]. 建筑材料学报, 2020, 23(3): 685-691. PENG R, CHEN W, LI Q, et al. Properties and microstructure of cemented paste tailings activated by sodium sulfate[J]. Journal of Building Materials, 2020, 23(3): 685-691 (in Chinese). [13] ZHANG W, LIU X M, ZHANG Z Q, et al. Circulating fluidized bed fly ash-blast furnace slag based cementitious materials: hydration behaviors and performance[J]. Construction and Building Materials, 2022, 342: 128006. [14] LV J Z, WANG X Y, YANG J C, et al. Effect of lime on the physical, mechanical, and hydration properties of circulating fluidized bed fly ash-blast furnace slag-based cementitious materials[J]. Case Studies in Construction Materials, 2024, 20: e02738. [15] 安 赛, 王宝民, 陈文秀, 等. 电石渣激发矿渣-粉煤灰复合胶凝材料的作用机制[J]. 硅酸盐通报, 2023, 42(4): 1333-1343. AN S, WANG B M, CHEN W X, et al. Interaction mechanism of carbide slag activating slag-fly ash composite cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1333-1343 (in Chinese). [16] ZHANG W, LIU X M, ZHANG Z Q, et al. Circulating fluidized bed fly ash mixed functional cementitious materials: shrinkage compensation of f-CaO, autoclaved hydration characteristics and environmental performance[J]. Materials, 2021, 14(20): 6004. [17] FU J Y, JONES A M, BLIGH M W, et al. Mechanisms of enhancement in early hydration by sodium sulfate in a slag-cement blend-insights from pore solution chemistry[J]. Cement and Concrete Research, 2020, 135: 106110. [18] CHRISTENSEN A N, JENSEN T R, HANSON J C. Formation of ettringite, Ca6Al2(SO4)3(OH)12·26H2O, AFt, and monosulfate, Ca4Al2O6(SO4)·14H2O, AFm-14, in hydrothermal hydration of Portland cement and of calcium aluminum oxide: calcium sulfate dihydrate mixtures studied by in situ synchrotron X-ray powder diffraction[J]. Journal of Solid State Chemistry, 2004, 177(6): 1944-1951. [19] DUNG N T, CHANG T P, YANG T R. Performance evaluation of an eco-binder made with slag and CFBC fly ash[J]. Journal of Materials in Civil Engineering, 2014, 26(12): 04014096. [20] 钱觉时, 余金城, 孙化强, 等. 钙矾石的形成与作用[J]. 硅酸盐学报, 2017, 45(11): 1569-1581. QIAN J S, YU J C, SUN H Q, et al. Formation and function of ettringite in cement hydrates[J]. Journal of the Chinese Ceramic Society, 2017, 45(11): 1569-1581 (in Chinese). [21] KE G J, LI Z Y, JIANG H S. Study on long-term solidification of all-solid waste cementitious materials based on circulating fluidized bed fly ash, red mud, carbide slag, and fly ash[J]. Construction and Building Materials, 2024, 427: 136284. [22] 赵展鹏. 钙矾石的形成及其对碱矿渣水泥砂浆收缩性能的影响[D]. 重庆: 重庆大学, 2021. ZHAO Z P. Formation of ettringite and its effect on shrinkage properties of alkali slag cement mortar[D]. Chongqing: Chongqing University, 2021 (in Chinese). [23] QIAN J S, SHI C J, WANG Z. Activation of blended cements containing fly ash[J]. Cement and Concrete Research, 2001, 31(8): 1121-1127. [24] ZHOU M K, CHEN P, CHEN X, et al. Study on hydration characteristics of circulating fluidized bed combustion fly ash (CFBCA)[J]. Construction and Building Materials, 2020, 251: 118993. [25] MOTA B, MATSCHEI T, SCRIVENER K. Impact of NaOH and Na2SO4 on the kinetics and microstructural development of white cement hydration[J]. Cement and Concrete Research, 2018, 108: 172-185. [26] 彭家惠, 楼宗汉. 钙矾石形成机理的研究[J]. 硅酸盐学报, 2000, 28(6): 511-515. PENG J H, LOU Z H. Study on the mechanism of ettringite formation[J]. Journal of the Chinese Ceramic Society, 2000, 28(6): 511-515 (in Chinese). |