硅酸盐通报 ›› 2025, Vol. 44 ›› Issue (4): 1227-1242.DOI: 10.16552/j.cnki.issn1001-1625.2024.1547
国爱丽1, 张守昆2, 刘学2, 吕茂荣3, 卢爽3,4
收稿日期:2024-12-16
修订日期:2025-02-12
出版日期:2025-04-15
发布日期:2025-04-18
通信作者:
卢 爽,博士,教授。E-mail:lus@hit.edu.cn
作者简介:国爱丽(1979—),女,博士。主要从事水泥基复合材料方面的研究。E-mail:ili.guo@bmtbj.cn
GUO Aili1, ZHANG Shoukun2, LIU Xue2, LYU Maorong3, LU Shuang3,4
Received:2024-12-16
Revised:2025-02-12
Published:2025-04-15
Online:2025-04-18
摘要: 随着“双碳”目标的推进,循环流化床(circulating fluidized bed, CFB)灰渣因产生量大、组分复杂及处理需求迫切,成为固废资源化利用的重要研究方向。本文综述了CFB灰渣的组成与特性,聚焦其膨胀特性和疏松结构,总结了CFB灰渣在水泥基材料、地质聚合物、道路基层材料、气凝胶制备及沸石制备等领域的低碳化应用现状和高附加值利用研究。研究表明,CFB灰渣在提升水泥基材料力学性能、优化微观结构及改善耐久性能方面具有显著优势。尽管存在高硫高钙引发的膨胀等问题,但通过物理或化学改性技术,CFB灰渣作为地质聚合物和高附加值功能材料的潜力逐渐被挖掘,应用价值显著提升。在未来,研究者应加强改性技术的研发与资源化路径的探索,推动CFB灰渣在低碳循环经济中的应用,为实现工业固废的可持续利用提供理论基础和技术支撑。
中图分类号:
国爱丽, 张守昆, 刘学, 吕茂荣, 卢爽. 循环流化床灰渣的研究现状综述[J]. 硅酸盐通报, 2025, 44(4): 1227-1242.
GUO Aili, ZHANG Shoukun, LIU Xue, LYU Maorong, LU Shuang. Comprehensive Review of Current Research on Circulating Fluidized Bed Ash[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1227-1242.
| [1] HOSSIN M A, XIONG S W, ALEMZERO D, et al. Analyzing the progress of China and the world in achieving sustainable development goals 7 and 13[J]. Sustainability, 2023, 15(19): 14115. [2] AGGARWAL R. Carbon offsets compatible with the Paris Agreement to limit global warming: call for a direct action[J]. Environmental Challenges, 2024, 17: 101034. [3] LAMB W F, SCHLEUSSNER C F, GRASSI G, et al. Countries need to provide clarity on the role of carbon dioxide removal in their climate pledges[J]. Environmental Research Letters, 2024, 19(12): 121001. [4] MARINI M, PIGOSSO D C A, PIERONI M, et al. To what extent are circular economy strategies accounted in science-based targets for carbon emission reduction?[J]. Computers & Industrial Engineering, 2024, 197: 110594. [5] XU G Y, ZANG L M, SCHWARZ P, et al. Achieving China’s carbon neutrality goal by economic growth rate adjustment and low-carbon energy structure[J]. Energy Policy, 2023, 183: 113817. [6] ZHAO X, MA X W, CHEN B Y, et al. Challenges toward carbon neutrality in China: strategies and countermeasures[J]. Resources, Conservation and Recycling, 2022, 176: 105959. [7] WANG H F, PING X D, LU L J, et al. Development trends of low-carbon technologies of Chinese steel industry to achieve carbon peaking and neutrality goals[J]. Journal of Physics: Conference Series, 2023, 2468(1): 012146. [8] LIU L, WANG X, WANG Z G. Recent progress and emerging strategies for carbon peak and carbon neutrality in China[J]. Greenhouse Gases: Science and Technology, 2023, 13(5): 732-759. [9] NOWAK W. Clean coal fluidized-bed technology in Poland[J]. Applied Energy, 2003, 74(3/4): 405-413. [10] XIE J, ZHONG W Q, SHAO Y J, et al. Simulation of combustion of municipal solid waste and coal in an industrial-scale circulating fluidized bed boiler[J]. Energy & Fuels, 2017, 31(12): 14248-14261. [11] BASU P, BUTLER J. Studies on the operation of loop-seal in circulating fluidized bed boilers[J]. Applied Energy, 2009, 86(9): 1723-1731. [12] HE P Y, ZHANG X M, CHEN H, et al. Waste-to-resource strategies for the use of circulating fluidized bed fly ash in construction materials: a mini review[J]. Powder Technology, 2021, 393: 773-785. [13] JANG H N, KIM J H, BACK S K, et al. Combustion characteristics of waste sludge at air and oxy-fuel combustion conditions in a circulating fluidized bed reactor[J]. Fuel, 2016, 170: 92-99. [14] JIN Y Q, LU L, MA X J, et al. Effects of blending hydrothermally treated municipal solid waste with coal on co-combustion characteristics in a lab-scale fluidized bed reactor[J]. Applied Energy, 2013, 102: 563-570. [15] LI L M, YU C J, BAI J S, et al. Heavy metal characterization of circulating fluidized bed derived biomass ash[J]. Journal of Hazardous Materials, 2012, 233: 41-47. [16] PIHU T, ARRO H, PRIKK A, et al. Oil shale CFBC ash cementation properties in ash fields[J]. Fuel, 2012, 93: 172-180. [17] RISSANEN J, OHENOJA K, KINNUNEN P, et al. Partial replacement of Portland-composite cement by fluidized bed combustion fly ash[J]. Journal of Materials in Civil Engineering, 2017, 29(8): 04017061. lf-hardening of fly ash from the fluidized bed combustion of wood and peat[J]. Fuel, 2014, 135: 69-75. [19] KOORNNEEF J, JUNGINGER M, FAAIJ A. Development of fluidized bed combustion: an overview of trends, performance and cost[J]. Progress in Energy and Combustion Science, 2007, 33(1): 19-55. [20] ANTHONY E J, JIA L F, WU Y H. CFBC ash hydration studies[J]. Fuel, 2005, 84(11): 1393-1397. [21] 吴 松, 周 洋, 李 曈, 等. 燃煤电厂固废资源化利用现状[C]//吉林省电机工程学会2024年学术年会获奖论文集. 长春: 中国电机工程学会, 2024: 476-486. WU S, ZHOU Y, LI T, et al. Current status of resource utilization of solid waste from coal-fired power plants[C]//Proceedings of Award-Winning Papers from the 2024 Annual Academic Conference of Jilin Provincial Society of Electrical Engineering. Chang Chun: Chinese Society For Electrical Engineering, 2024: 476-486 (in Chinese). [22] 杨天华, 佟 瑶, 翟英媚, 等. 碳中和愿景下有机固废热转化清洁利用技术研究现状与展望[J]. 洁净煤技术, 2024, 30(3): 29-51. YANG T H, TONG Y, ZHAI Y M, et al. Research status and prospects of thermal conversion clean utilization technology for organic solid waste under the carbon-neutral vision[J]. Clean Coal Technology, 2024, 30(3): 29-51 (in Chinese). [23] 包永鹏. 工业固废资源化综合利用的策略与实践[J]. 选煤技术, 2024, 52(3): 9-16. BAO Y P. Strategy and practice of comprehensive resource utilization of industrial solid waste[J]. Coal Preparation Technology, 2024, 52(3): 9-16 (in Chinese). [24] ZHENG D P, WANG D M, CUI H Z, et al. Hydration characteristics of cement with high volume circulating fluidized bed fly ash[J]. Construction and Building Materials, 2023, 380: 131310. [25] XU N, MA S X, WANG N N, et al. Optimization of ternary activator for enhancing mechanical properties of carbonized cementitious material based on circulating fluidized bed fly ash[J]. Processes, 2024, 12(2): 289. [26] 邓文叶, 谢永新, 李守柱, 等. 流化床粉煤灰的组成形貌及在油水分离废水处理中的应用[J]. 环境工程技术学报, 2014, 4(6): 462-466. DENG W Y, XIE Y X, LI S Z, et al. Composition and morphology of fluidized bed fly ashes and its application to oil-water separation wastewater treatment[J]. Journal of Environmental Engineering Technology, 2014, 4(6): 462-466 (in Chinese). [27] LONG X F, LI J B, WU Q, et al. Inhibiting agglomeration of bed particles in CFB burning high-alkali fuel: experiment, mechanisms and criteria for recirculating bottom ash or selecting alternative bed materials[J]. Energy, 2024, 289: 130026. [28] WANG Y L, ZHAO Y Q, HAN Y S, et al. The effect of circulating fluidised bed bottom ash content on the mechanical properties and drying shrinkage of cement-stabilised soil[J]. Materials, 2021, 15(1): 14. [29] 王玉召, 张建生. 垃圾焚烧循环流化床锅炉的运行性能[J]. 电站系统工程, 2012, 28(1): 41-43. WANG Y Z, ZHANG J S. Operation performance of a municipal solid waste incineration CFB boiler[J]. Power System Engineering, 2012, 28(1): 41-43 (in Chinese). [30] XU N, MA S X, WANG N N, et al. Adding hydrated lime for regulating hydration and carbonation properties of circulating fluidized bed boiler fly ash[J]. Materials Today Communications, 2024, 41: 111008. [31] JACKSON N M, SCHULTZ S, SANDER P, et al. Beneficial use of CFB ash in pavement construction applications[J]. Fuel, 2009, 88(7): 1210-1215. [32] LU X F, AMANO R S. Feasible experimental study on the utilization of a 300 MW CFB boiler desulfurizating bottom ash for construction applications[J]. Journal of Energy Resources Technology, 2006, 128(4): 311-318. [33] CHENG Z, MENG Q S, LIU L, et al. Properties and hydration mechanism of slow-setting and expansive cement based on CFB ash and slag[J]. Journal of Building Engineering, 2024, 96: 110631. [34] MA X D, HE T S, XU Y D, et al. Properties of composite sintered modified fluidized bed incineration fly ash as cement admixture[J]. Construction and Building Materials, 2023, 378: 131210. [35] LIN K L, CHENG T W, HO C H, et al. Utilization of circulating fluidized bed fly ash as pozzolanic material[J]. The Open Civil Engineering Journal, 2017, 11(1): 176-186. [36] 韩东霄, 阎蕊珍, 李 倩, 等. 不同养护条件下掺循环流化床固硫灰硬化水泥浆的膨胀性能[J]. 硅酸盐通报, 2022, 41(12): 4332-4341. HAN D X, YAN R Z, LI Q, et al. Expansion performance of hardened cement paste with circulating fluidized bed fly ash under different curing conditions[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(12): 4332-4341 (in Chinese). [37] 陈 盟, 周明凯, 王 杰, 等. 循环流化床飞灰对泡沫混凝土性能的影响[J]. 硅酸盐通报, 2023, 42(7): 2447-2457. CHEN M, ZHOU M K, WANG J, et al. Effect of circulating fluidized bed fly ash on performance of foam concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(7): 2447-2457 (in Chinese). [38] 赵 帆, 郭聪林, 张 宏, 等. 循环流化床粉煤灰基泡沫轻质土的制备及其耐久性研究[J]. 新型建筑材料, 2024, 51(9): 41-47+68. ZHAO F, GUO C L, ZHANG H, et al. Preparation of circulating fluidized bed fly ash-based foamed lightweight soil and its durability properties[J]. New Building Materials, 2024, 51(9): 41-47+68 (in Chinese). [39] 燕可洲, 孙向阳, 张鑫泽, 等. 循环流化床粉煤灰组成与含量对其水化胶凝性能的影响[J]. 硅酸盐通报, 2024, 43(2): 564-571+583. YAN K Z, SUN X Y, ZHANG X Z, et al. Effects of composition and content of CFBFA on hydrated cementitious properties[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(2): 564-571+583 (in Chinese). [40] 刘新悦. 循环流化床灰渣改良土作为路基填筑材料的研究与应用[D]. 武汉: 武汉理工大学, 2022. LIU X Y. Research and application of circulating fluidized bed ash improved soil as subgrade filling material[D]. Wuhan: Wuhan University of Technology, 2022 (in Chinese). [41] 周 旭, 徐国辉, 郭 强, 等. 循环流化床灰渣制备胶凝材料综述[J]. 当代化工研究, 2024(16): 12-14. ZHOU X, XU G H, GUO Q, et al. Review on preparation of cementitious materials from circulating fluidized bed combustion ash[J]. Modern Chemical Research, 2024(16): 12-14 (in Chinese). [42] ZHANG W, LIU X M, ZHANG Z Q. Mechanical, expansion and rheological properties of circulating fluidized bed fly ash based ecological cement: a critical review[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(9): 1670-1682. [43] 韩东霄. 循环流化床固硫灰用于钢管混凝土的试验研究[D]. 太原: 太原理工大学, 2023. HAN D X. Experimental study of concrete filled steel tube using circulating fluidized bed fly ash [D]. Taiyuan: Taiyuan University of Technology, 2023 (in Chinese). [44] MA Z B, SUN Y J, DUAN S Y, et al. Properties and hydration mechanism of eco-friendly cementitious material prepared using coal gasification slag and circulating fluidized bed fly ash[J]. Construction and Building Materials, 2024, 420: 135581. [45] ZHANG W, GU J R, ZHOU X, et al. Circulating fluidized bed fly ash based multi-solid wastes road base materials: hydration characteristics and utilization of SO3 and f-CaO[J]. Journal of Cleaner Production, 2021, 316: 128355. [46] LIN K L, HWANG C L, CHANG Y M. Elucidating the pozzolanic characteristics of pastes containing circulating fluidized bed fly ash[J]. The Open Civil Engineering Journal, 2015, 9(1): 180-186. [47] WU C R, ZHAN B J, HONG Z Q, et al. Hydration behavior of circulating fluidized bed fly ash (CFBFA) as a cementitious binder[J]. Construction and Building Materials, 2022, 314: 125625. [48] 吴金龙. CFB高钙脱硫灰渣作硫铝酸盐水泥原料及掺合料试验研究[D]. 杭州: 浙江大学, 2021. WU J L. Experimental research on high calcium CFB desulfurization ash as raw material and admixture of sulphoaluminate cement [D]. Hangzhou: Zhejiang University, 2021 (in Chinese). [49] 单雪媛, 马志斌, 郭彦霞, 等. 不同粒径循环流化床锅炉粉煤灰组成特性研究[C]//第二十二届大气污染防治技术研讨会论文集. 太原: 中国环境科学学会, 2018: 119. SHAN X Y, MA Z B, GUO Y S, et al. Study on the compositional characteristics of circulating fluidized bed boiler fly ash with different particle size fractions[C]//Proceedings of the 22nd Symposium on Air Pollution Prevention and Control Technologies. Tai Yuan: Chinese Society For Environmental Sciences, 2024: 119 (in Chinese). [50] 何科文, 卢忠远, 李 军, 等. 循环流化床固硫灰渣性能比较研究[J]. 武汉理工大学学报, 2014, 36(3): 6-13. HE K W, LU Z Y, LI J, et al. Comparative study on properties of circulating fluidized bed combustion ash and slag[J]. Journal of Wuhan University of Technology, 2014, 36(3): 6-13 (in Chinese). [51] CHEN X, ZHANG J C, GUO W B, et al. Occurrence and migration laws of water in circulating fluidized bed bottom slag mortar and their influences on mortar properties[J]. Construction and Building Materials, 2022, 315: 125748. [52] LIU L, HE L, CHENG Z, et al. Interface bonding behavior of concrete-filled steel tube blended with circulating fluidized bed bottom ash[J]. Materials, 2021, 14(6): 1529. [53] 吴金龙, 程乐鸣, 施正伦, 等. CFB高钙脱硫灰渣制备硫铝酸盐水泥熟料试验研究[J]. 能源工程, 2021, 41(4): 32-36+42. WU J L, CHENG L M, SHI Z L, et al. Experimental research on preparation of sulphoaluminate cement from circulating fluidized bed desulfurization ash[J]. Energy Engineering, 2021, 41(4): 32-36+42 (in Chinese). [54] KONIST A, PAAVER P, PIHU T, et al. Phase transformation and strength of hydrated circulating fluidised bed combustion ash sediment in an open environment over 15 years: implications for the long-term stability of ash waste plateaus[J]. Oil Shale, 2024, 41(3): 145. [55] JIANG D H, SONG W J, WANG X F, et al. Physicochemical properties of bottom ash obtained from an industrial CFB gasifier[J]. Journal of the Energy Institute, 2021, 95: 1-7. [56] HAN Y S, QIN Y K, WANG Y L, et al. The effect of different ages and water-binder ratios on the mechanical properties of circulating fluidized bed combustion desulfurization slag cement-soil[J]. Case Studies in Construction Materials, 2022, 17: e01660. [57] 李 昊, 陈午凤, 王长安, 等. 急冷处理对CFB锅炉底渣脱硫特性的影响[J]. 化工学报, 2016, 67(9): 3583-3589. LI H, CHEN W F, WANG C A, et al. Effect of rapid water-cooling process on desulfurization performance of CFB bottom ash[J]. CIESC Journal, 2016, 67(9): 3583-3589 (in Chinese). [58] 毕春丽, 张 墨, 张增军. 循环流化床锅炉底渣在混凝土中的应用研究[J]. 粉煤灰综合利用, 2004, 18(4): 18-20. BI C L, ZHANG M, ZHANG Z J. The application study on CFB slag in concrete[J]. Fly Ash Comprehensive Utilization, 2004, 18(4): 18-20 (in Chinese). [59] SIDDIQUE S, KIM H, JANG J G. Properties of high-volume slag cement mortar incorporating circulating fluidized bed combustion fly ash and bottom ash[J]. Construction and Building Materials, 2021, 289: 123150. [60] 周明凯, 饶 可, 孟秀元, 等. CFB飞灰压浆料的制备及高强微膨胀机理研究[J]. 硅酸盐通报, 2024, 43(6): 2157-2167. ZHOU M K, RAO K, MENG X Y, et al. Preparation and high-strength micro-expansion mechanism of CFB fly ash compaction slurry[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(6): 2157-2167 (in Chinese). [61] 周明凯, 叶 青, 陈 潇, 等. CFB灰渣抹灰砂浆的组成设计与性能研究[J]. 硅酸盐通报, 2022, 41(2): 425-432+449. ZHOU M K, YE Q, CHEN X, et al. Composition design and performance of CFB fly ash and CFB slag plastering mortar[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 425-432+449 (in Chinese). [62] ZHANG W Y, CHOI H, SAGAWA T, et al. Compressive strength development and durability of an environmental load-reduction material manufactured using circulating fluidized bed ash and blast-furnace slag[J]. Construction and Building Materials, 2017, 146: 102-113. [63] LV J Z, WANG X Y, YANG J C, et al. Effect of lime on the physical, mechanical, and hydration properties of circulating fluidized bed fly ash-blast furnace slag-based cementitious materials[J]. Case Studies in Construction Materials, 2024, 20: e02738. [64] LEE B Y, JEON S M, CHO C G, et al. Evaluation of time to shrinkage-induced crack initiation in OPC and slag cement matrices incorporating circulating fluidized bed combustion bottom ash[J]. Construction and Building Materials, 2020, 257: 119507. [65] CHENG Z, HE L, LIU L, et al. Mechanical properties and durability of high-performance concretes blended with circulating fluidized bed combustion ash and slag as replacement for ordinary Portland cement[J]. Advances in Materials Science and Engineering, 2020, 2020(1): 8613106. [66] WANG X Y, WANG X Y, LV J Z, et al. Mechanical properties and hydration behaviour of circulating fluidised bed fly ash- ground granulated blast furnace slag-lime ecofriendly cementitious material[J]. Construction and Building Materials, 2023, 409: 133964. [67] ZHANG W Y, WANG S, DUAN X H, et al. Mechanical properties, durability and microstructure of cementitious materials with low-calcium circulating fluidized bed fly ash[J]. Construction and Building Materials, 2023, 369: 130394. [68] GUO W H, YAO W, LIANG G W, et al. Mechanical properties, microstructure and life-cycle assessment of eco-friendly cementitious materials containing circulating fluidized bed fly ash and ground granulated blast furnace slag[J]. Journal of Building Engineering, 2024, 95: 110293. [69] CHENG Z, CHENG Z J, HOU H, et al. Research on the expansion characteristics and compressive strength of mortars containing circulating fluidized bed combustion desulfurization slag[J]. Advances in Materials Science and Engineering, 2018, 2018(1): 4150145. [70] LIU W H, LIU X Y, ZHANG L, et al. Rheology, mechanics, microstructure and durability of low-carbon cementitious materials based on circulating fluidized bed fly ash: a comprehensive review[J]. Construction and Building Materials, 2024, 411: 134688. [71] ALEMU A S, LEE B Y, PARK S, et al. Self-healing of Portland and slag cement binder systems incorporating circulating fluidized bed combustion bottom ash[J]. Construction and Building Materials, 2022, 314: 125571. [72] LEE H K, JEON S M, LEE B Y, et al. Use of circulating fluidized bed combustion bottom ash as a secondary activator in high-volume slag cement[J]. Construction and Building Materials, 2020, 234: 117240. [73] 王 杰, 王 勇, 王宇强, 等. 循环流化床燃煤固硫灰的CBR特性及膨胀机理研究[J]. 硅酸盐通报, 2023, 42(4): 1323-1332. WANG J, WANG Y, WANG Y Q, et al. CBR characteristics and expansion mechanism of circulating fluidized bed fly ash[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1323-1332 (in Chinese). [74] 杜新宇, 陈 潇, 周明凯, 等. 含硫酸盐类固废对硅酸盐水泥水化影响研究[J]. 硅酸盐通报, 2023, 42(5): 1710-1720. DU X Y, CHEN X, ZHOU M K, et al. Effects of sulfate-containing solid wastes on hydration of Portland cement[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(5): 1710-1720 (in Chinese). [75] 胡瑶瑶, 邵明扬, 张 宁, 等. 粉磨时间对循环流化床粉煤灰性能及水化特性的影响[J/OL]. 混凝土与水泥制品, 1-5 (2024-10-09) [2024-12-16]. http://kns.cnki.net/kcms/detail/32.1173.TU.20241008.0930.002.html. HU Y Y, SHAO M Y, ZHANG N, et al. Effect of grinding time on performance and hydration characteristics of circulating fluidized bed fly ash[J]. China Concrete and Cement Products, 1-5 (2024-10-09) [2024-12-16]. http://kns.cnki.net/kcms/detail/32.1173.TU.20241008.0930.002.html (in Chinese). [76] 王 琪, 周冬冬, 方 莉. 超细循环流化床粉煤灰对碱式硫酸镁水泥力学性能的影响[J]. 新型建筑材料, 2020, 47(4): 43-48. WANG Q, ZHOU D D, FANG L. Effect of UCFA on mechanical properties of basic magnesium sulfate cement[J]. New Building Materials, 2020, 47(4): 43-48 (in Chinese). [77] DU X Q, HUANG Z, DING Y, et al. Feasibility study of grinding circulating fluidized bed ash as cement admixture[J]. Materials, 2022, 15(16): 5610. [78] 张宏祥. 粉煤灰几个效应的显微结构研究[J]. 硅酸盐通报, 1985, 4(2): 39-43. ZHANG H X. Study on microstructure of several effects of fly ash[J]. Bulletin of the Chinese Cerrmic Society, 1985, 4(2): 39-43 (in Chinese). [79] 房天齐. 循环流化床(CFB)灰制备蒸压加气混凝土的研究[D]. 上海: 华东理工大学, 2022. FANG T Q. Preparation of autoclaved aerated concrete from circulating fluidized bed ash[D]. Shanghai: East China University of Science and Technology, 2022 (in Chinese). [80] 刘品德, 全 峰, 陆 洁, 等. 煤粉炉粉煤灰和循环流化床锅炉粉煤灰的特性及其对蒸压加气混凝土性能的影响[J]. 混凝土与水泥制品, 2019(7): 67-70. LIU P D, QUAN F, LU J, et al. Characteristic of Pu lverized coal ash and circulating fluidized bed ash and the influence of the ashes on performance of autoclaved aer ated concrete[J]. China Concrete and Cement Products, 2019(7): 67-70 (in Chinese). [81] WEI C, XIE Z Q, GU J R, et al. High-volume utilization of circulating fluidized bed fly ash for the production of autoclaved aerated concrete: performance optimization and hydration characteristics[J]. Construction and Building Materials, 2024, 448: 138305. [82] WEI C, YAN Y T, ZHANG Z Q, et al. Insight into the synergic effects of circulating fluidized bed fly ash, red mud and blast furnace slag in preparation of ultrahigh-performance concrete: reaction mechanism and performance optimization[J]. Construction and Building Materials, 2023, 403: 133120. [83] 李卫红, 郭文斌, 郭向兵, 等. CFB灰渣混凝土的组成设计与应用研究[J]. 硅酸盐通报, 2024, 43(7): 2530-2538. LI W H, GUO W B, GUO X B, et al. Composition design and application of CFB ash-slag concrete[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(7): 2530-2538 (in Chinese). [84] 刘虎林, 王 昭, 伍媛婷, 等. 固硫灰渣的基本特性及其作水泥混合材的关键问题研究进展[J]. 硅酸盐通报, 2021, 40(6): 2052-2061+2069. LIU H L, WANG Z, WU Y T, et al. Review on characteristics of fluidized bed combustion ashes and key issues in their application as cement admixtures[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 2052-2061+2069 (in Chinese). [85] CHENG A, HSU H M, CHAO S J. Properties of concrete incorporating bed ash from circulating fluidized bed combustion and ground granulates blast-furnace slag[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2011, 26(2): 347-353. [86] 牛茂威, 谢小莉, 林 洲, 等. 磨细固硫灰渣作为混合材对水泥性能的影响[J]. 非金属矿, 2013, 36(3): 1-3. NIU M W, XIE X L, LIN Z, et al. Performance of cement blending pulverized ash and slag from fluidized bed combustion[J]. Non-Metallic Mines, 2013, 36(3): 1-3 (in Chinese). [87] 韩复谦, 乔秀臣. 碱激发剂中钠、硅对CFB飞灰合成地聚物的影响[J]. 硅酸盐通报, 2017, 36(4): 1430-1435. HAN F Q, QIAO X C. Effects of silicon and sodium content in alkali activator on the formation of geopolymer prepared by circulating fluidized bed fly ash[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(4): 1430-1435 (in Chinese). [88] TOPÇU B, TOPRAK M U. Properties of geopolymer from circulating fluidized bed combustion coal bottom ash[J]. Materials Science and Engineering: A, 2011, 528(3): 1472-1477. [89] 戴 民, 王 越. 循环流化床脱硫灰地聚物试验研究[J]. 硅酸盐通报, 2020, 39(9): 2898-2904+2918. DAI M, WANG Y. Experimental study on circulating fluidized bed desulfurization ash geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(9): 2898-2904+2918 (in Chinese). [90] 宋学锋, 苏子义, 赵鹤翔, 等. 化学激发固硫灰/矿渣地聚物的体积稳定性与强度[J]. 硅酸盐通报, 2019, 38(7): 2044-2048. SONG X F, SU Z Y, ZHAO H X, et al. Chemical activating strength and volume stability of geopolymer based on circulating fluidized bed combustion ash and slag[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(7): 2044-2048 (in Chinese). [91] LI X J, JIN S, YAN T, et al. Unraveling the interactive effects of Na2O/Al2O3, SiO2/Al2O3 and calcium on the properties of geopolymers from circulating fluidized bed fly ashes[J]. Case Studies in Construction Materials, 2024, 21: e03798. [92] CHENG Z, GUO T D, LIU Y H, et al. Modification of cement-based circulating fluidized bed combustion slag: physical grinding and chemical excitation[J]. Construction and Building Materials, 2024, 441: 137578. [93] 刘 泽, 张 媛, 周 瑜, 等. 循环流化床粉煤灰基地质聚合物固化Zn2+的研究[J]. 硅酸盐通报, 2018, 37(4): 1320-1323+1337. LIU Z, ZHANG Y, ZHOU Y, et al. Immobilization of Zn2+ using circulating fluidized bed fly ash based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(4): 1320-1323+1337 (in Chinese). [94] XU H, LI Q, SHEN L F, et al. Synthesis of thermostable geopolymer from circulating fluidized bed combustion (CFBC) bottom ashes[J]. Journal of Hazardous Materials, 2010, 175(1/2/3): 198-204. [95] 徐冬杰. 循环流化床灰渣注浆充填材料应用研究[D]. 邯郸: 河北工程大学, 2021. XU D J. Study on the application of circulating fluidized bed ash grouting filling material[D]. Handan: Hebei University of Engineering, 2021 (in Chinese). [96] 周 媛. 循环流化床灰渣在水泥稳定碎石中的性能研究[D]. 邯郸: 河北工程大学, 2021. ZHOU Y. Study on application of Circulating Fluidized Bed ash and slag in cement stabilized crushed stone [D]. Handan: Hebei University of Engineering, 2021 (in Chinese). [97] 周 媛, 单俊鸿, 高 鹏, 等. 循环流化床灰渣水稳基层强度及形成机理研究[J]. 粉煤灰综合利用, 2021, 35(6): 73-79. ZHOU Y, SHAN J H, GAO P, et al. Study on strength and formation mechanism of water-stable base course of ashes and slags in circulating fluidized bed[J]. Fly Ash Comprehensive Utilization, 2021, 35(6): 73-79 (in Chinese). [98] 郭 华. 循环流化床锅炉灰渣用于公路工程的试验研究[J]. 青海交通科技, 2021, 33(2): 153-158. GUO H. Experimental study on ash and slag of circulating fluidized bed boiler used in highway engineering[J]. Qinghai Transportation Science and Technology, 2021, 33(2): 153-158 (in Chinese). [99] 张洪智, 梁取平, 邵明扬, 等. 磨细循环流化床粉煤灰对泡沫轻质土力学性能和孔结构的影响[J]. 材料导报, 2024, 38(22): 54-60. ZHANG H Z, LIANG Q P, SHAO M Y, et al. Influence of circulating refined fluidized bed fly ash on mechanical properties and pore structure of foamed concrete[J]. Materials Reports, 2024, 38(22): 54-60 (in Chinese). [100] CHENG Y, WANG X Y, CHEN J Z, et al. The performance of bubble-mixed lightweight soil to relieve expansion of circulating fluidized-bed fly ash[J]. Journal of Building Engineering, 2023, 77: 107470. [101] YAN R Z, KE G J, ZHAO S L, et al. Experimental study on dynamic resilient modulus of subgrade with circulating fluidized bed combustion ash as filler[J]. Construction and Building Materials, 2023, 397: 132427. [102] ZHOU M K, LIU X Y, CHEN X, et al. Study on strength, water stability, shrinkage, and microstructure of CFB slag modified cement stabilized clay[J]. Materials, 2021, 14(23): 7460. [103] LI D X, ZHONG F W, GUO Q J, et al. Properties of flash hydrated and agglomerated particles of CFB fly ashes[J]. Fuel Processing Technology, 2007, 88(3): 215-220. [104] WU X D, FAN M H, MCLAUGHLIN J F, et al. A novel low-cost method of silica aerogel fabrication using fly ash and trona ore with ambient pressure drying technique[J]. Powder Technology, 2018, 323: 310-322. [105] LIU Z Y, ZANG C Y, ZHANG S, et al. Atmospheric drying preparation and microstructure characterization of fly ash aerogel thermal insulation material with superhydrophobic[J]. Construction and Building Materials, 2021, 303: 124425. [106] SHEN M M, JIANG X Y, ZHANG M, et al. Synthesis of SiO2-Al2O3 composite aerogel from fly ash: a low-cost and facile approach[J]. Journal of Sol-Gel Science and Technology, 2020, 93(2): 281-290. [107] 张丽宏, 马斯琪. 循环流化床粉煤灰可控制备高纯F型八面沸石研究[J]. 人工晶体学报, 2020, 49(2): 339-345. ZHANG L H, MA S Q. Preparation of highly purity zeolite F from circulating fluidized bed fly ash[J]. Journal of Synthetic Crystals, 2020, 49(2): 339-345 (in Chinese). [108] 史鹏程. 粉煤灰合成Cu-SSZ-13分子筛过程中重金属迁移规律的研究[D]. 太原: 太原理工大学, 2022. SHI P C. Study on the migration behavior of heavy metals during the synthesis process of coal fly ash-based Cu-SSZ-13[D]. Taiyuan: Taiyuan University of Technology, 2022 (in Chinese). [109] KOUKOUZAS N, VASILATOS C, ITSKOS G, et al. Removal of heavy metals from wastewater using CFB-coal fly ash zeolitic materials[J]. Journal of Hazardous Materials, 2010, 173(1/2/3): 581-588. [110] 李焕娣. 流化床粉煤灰合成分子筛及处理含氟废水的研究[D]. 太原: 太原理工大学, 2009. LI H D. The synthesis of zeolites with circulating fluidized bed (CFB) fly ash and the treatment of fluoride wastewater[D]. Taiyuan: Taiyuan University of Technology, 2009 (in Chinese). [111] ZOU J J, GUO C B, WEI C D, et al. Synthesis of pure Na-X and Na-P zeolite from acid-extracting residues of CFB fly ash by a single-step hydrothermal method[J]. Materials Transactions, 2016, 57(5): 726-731. [112] GRELA A, HEBDA M, MICHAŁ Ł, et al. Thermal behavior and physical characteristics of synthetic zeolite from CFB-coal fly ash[J]. Microporous and Mesoporous Materials, 2016, 220: 155-162. |
| [1] | 梅文政, 高鹏, 蔚畅, 原皓, 周明凯. 矿渣-硫酸盐对循环流化床飞灰基胶凝材料的复合增强效应研究[J]. 硅酸盐通报, 2025, 44(4): 1337-1345. |
| [2] | 孙新坡, 王春英, 田子剑, 胥坳. 废弃口罩再利用于水泥基建筑材料的研究综述[J]. 硅酸盐通报, 2025, 44(4): 1255-1266. |
| [3] | 周武, 李杨, 冯伟光, 苏轶, 揭伟哲, 张华, 倪红卫. 磷石膏的综合利用及其在建筑材料领域的应用研究进展[J]. 硅酸盐通报, 2024, 43(2): 534-542. |
| [4] | 刘松辉, 张猗峥, 安家宜, 管学茂. 聚丙烯酰胺的合成及其改性水泥基材料研究进展[J]. 硅酸盐通报, 2024, 43(12): 4285-4294. |
| [5] | 陈志友, 苏小琼, 杨志文, 肖洪旭. 锂云母锂渣性质及利用研究现状[J]. 硅酸盐通报, 2021, 40(3): 877-882. |
| [6] | 袁政成;黄法礼;王振;温家馨;易忠来;李化建;谢永江;袁静怡;李洪福. 隧道洞渣在建筑材料中的资源化综合利用研究进展[J]. 硅酸盐通报, 2020, 39(8): 2468-2475. |
| [7] | 王晓丽;李秋义;陈帅超;岳公冰. 工业固体废弃物在新型建材领域中的应用研究与展望[J]. 硅酸盐通报, 2019, 38(11): 3456-346. |
| [8] | 吴寅瑞;金娇;陈柏臻;郑健龙;彭浩;陆思航. 坡缕石在建材领域的应用研究进展[J]. 硅酸盐通报, 2018, 37(8): 2436-2441. |
| [9] | 王清涛;李森;于华芹;李峰芝;乔海波;徐会君;刘俊成;杜庆洋. 利用赤泥制备轻质高强保温装饰一体化建筑材料[J]. 硅酸盐通报, 2018, 37(4): 1393-1398. |
| [10] | 扶庭阳;罗玉萍;郭保林. 超早强硫铝酸盐水泥胶砂的制备与性能研究[J]. 硅酸盐通报, 2017, 36(2): 449-453. |
| [11] | 朱晓波;李望;管学茂;马娇. 拜耳法赤泥脱碱研究现状[J]. 硅酸盐通报, 2014, 33(9): 2254-2257. |
| [12] | 刘晓琴;苏晓磊. 铜电子浆料的研究发展现状[J]. 硅酸盐通报, 2013, 32(12): 2502-2507. |
| [13] | 朱化雨;闫圣娟;陈怀成;赵洪义. 天然沸石在建材领域中的应用研究进展[J]. 硅酸盐通报, 2012, 31(5): 1181-1184. |
| [14] | 易龙生;王浩;王鑫;彭杰. 粉煤灰建材资源化的研究进展[J]. 硅酸盐通报, 2012, 31(1): 88-91. |
| [15] | 蔡晓军;奚修安;税安泽;吴婷婷;陈军建;简润桐;吴细桂. 利用陶瓷抛光废料制备高强轻质建筑材料的研究[J]. 硅酸盐通报, 2011, 30(4): 955-959. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||