硅酸盐通报 ›› 2025, Vol. 44 ›› Issue (4): 1255-1266.DOI: 10.16552/j.cnki.issn1001-1625.2024.1401
孙新坡1, 王春英1, 田子剑2, 胥坳1
收稿日期:2024-11-18
修订日期:2025-02-06
出版日期:2025-04-15
发布日期:2025-04-18
通信作者:
胥 坳。E-mail:xuao@suse.edu.cn
作者简介:孙新坡(1978—),男,博士,教授。主要从事环境地质工程方面的科研与教学工作。E-mail:xinpohd@suse.edu.cn
基金资助:SUN Xinpo1, WANG Chunying1, TIAN Zijian2, XU Ao1
Received:2024-11-18
Revised:2025-02-06
Published:2025-04-15
Online:2025-04-18
摘要: 废弃口罩的回收利用是应对环境污染和资源浪费的关键之一。作为口罩的主要成分,聚丙烯纤维的可再生性使其在水泥基建筑材料中的应用逐渐受到关注。本文综述了废弃口罩在水泥基建筑材料中的应用现状,总结了废弃口罩的回收技术,包括裁剪、热挤压、碎纸机和破壁机粉碎等。研究表明,掺入废弃口罩纤维对混凝土、砂浆和道路基层等材料的力学性能、流动性和耐久性产生了显著影响。此外,废弃口罩纤维的尺寸和处理方式对水泥基建筑材料的力学性能也有重要影响。同时,不同的应用场景对材料性能的影响也存在差异。上述研究结论可为水泥基建筑材料的可持续发展提供理论支持和实践指导。
中图分类号:
孙新坡, 王春英, 田子剑, 胥坳. 废弃口罩再利用于水泥基建筑材料的研究综述[J]. 硅酸盐通报, 2025, 44(4): 1255-1266.
SUN Xinpo, WANG Chunying, TIAN Zijian, XU Ao. Review on Reuse of Discarded Masks in Cement-based Building Materials[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1255-1266.
| [1] AMMENDOLIA J, SATURNO J, BROOKS A L, et al. An emerging source of plastic pollution: environmental presence of plastic personal protective equipment (PPE) debris related to COVID-19 in a metropolitan city[J]. Environmental Pollution, 2021, 269: 116160. [2] ARIZTON. Face mask market-global outlook & forecast 2021-2026[R/OL]. (2021-05-06)[2024-11-01]. https://www.reportlinker.com/p05934703/Face-Mask-Market-Global-Outlook-and-Forecast.html?utm_source=GNW. [3] PRATA J C, SILVA A L P, WALKER T R, et al. COVID-19 pandemic repercussions on the use and management of plastics[J]. Environmental Science & Technology, 2020, 54(13): 7760-7765. [4] BOROUJENI M, SABERIAN M, LI J. Environmental impacts of COVID-19 on Victoria, Australia, witnessed two waves of Coronavirus[J]. Environmental Science and Pollution Research International, 2021, 28(11): 14182-14191. [5] DHARMARAJ S, ASHOKKUMAR V, HARIHARAN S, et al. The COVID-19 pandemic face mask waste: a blooming threat to the marine environment[J]. Chemosphere, 2021, 272: 129601. [6] TORRES F G, DE-LA-TORRE G E. Face mask waste generation and management during the COVID-19 pandemic: an overview and the Peruvian case[J]. Science of the Total Environment, 2021, 786: 147628. [7] ARAGAW T A. Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario[J]. Marine Pollution Bulletin, 2020, 159: 111517. [8] WANG Z, AN C J, CHEN X J, et al. Disposable masks release microplastics to the aqueous environment with exacerbation by natural weathering[J]. Journal of Hazardous Materials, 2021, 417: 126036. [9] THOMAS G P. Recycling of polypropylene (PP)[EB/OL].(2012-07-08)[2024-11-01]. https://www.azocleantech.com/article.Aspx?ArticleID=240. [10] GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7): e170078. [11] ZOLLO R F. Fiber-reinforced concrete: an overview after 30 years of development[J]. Cement and Concrete Composites, 1997, 19(2): 107-122. [12] SAMAAN M, MIRMIRAN A, SHAHAWY M. Model of concrete confined by fiber composites[J]. Journal of Structural Engineering, 1998, 124(9): 1025-1031. [13] SONG P S, HWANG S. Mechanical properties of high-strength steel fiber-reinforced concrete[J]. Construction and Building Materials, 2004, 18(9): 669-67. [14] LEE J H, CHO B, CHOI E. Flexural capacity of fiber reinforced concrete with a consideration of concrete strength and fiber content[J]. Construction and Building Materials, 2017, 138: 222-231. [15] HEJAZI S M, SHEIKHZADEH M, ABTAHI S M, et al. A simple review of soil reinforcement by using natural and synthetic fibers[J]. Construction and Building Materials, 2012, 30: 100-116. [16] TANG C S, SHI B, GAO W, et al. Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil[J]. Geotextiles and Geomembranes, 2007, 25(3): 194-20. [17] YUAN B X, LI Z H, CHEN Y M, et al. Mechanical and microstructural properties of recycling granite residual soil reinforced with glass fiber and liquid-modified polyvinyl alcohol polymer[J]. Chemosphere, 2022, 286: 13165. [18] TANG C S, SHI B, ZHAO L Z. Interfacial shear strength of fiber reinforced soil[J]. Geotextiles and Geomembranes, 2010, 28(1): 54-62. [19] YANG E H, LI V C. Strain-hardening fiber cement optimization and component tailoring by means of a micromechanical model[J]. Construction and Building Materials, 2010, 24(2): 130-139. [20] WU B, QIU J S. Enhancing the hydrophobic PP fiber/cement matrix interface by coating nano-AlOOH to the fiber surface in a facile method[J]. Cement and Concrete Composites, 2022, 125: 104297. [21] YANG E H, LI V C. A micromechanical model for fiber cement optimization and component tailoring[J]. Civil & Enviromental Engineering, 2006, 24(2): 130-139. [22] YAO W, LI J, WU K R. Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction[J]. Cement and Concrete Research, 2003, 33(1): 27-30. [23] FADARE O O, OKOFFO E D. Covid-19 face masks: a potential source of microplastic fibers in the environment[J]. The Science of the Total Environment, 2020, 737: 140279. [24] WANG F M, LUO X Y, HAI Y, et al. Experimental investigation of face mask fiber-reinforced fully recycled coarse aggregate concrete[J]. Construction and Building Materials, 2024, 447: 138141. [25] SUN X P, JIANG Z Y, XU A, et al. Recycle of discarded masks in civil engineering: current status and future opportunities with silane coupling agent modified discarded masks[J]. Construction and Building Materials, 2022, 405: 133266. [26] AAL A A, ABDULLAH G M S, QADRI S M T, et al. Advances on concrete strength properties after adding polypropylene fibers from health personal protective equipment (PPE) of COVID-19: implication on waste management and sustainable environment[J]. Physics and Chemistry of the Earth, 2022, 128: 103260. [27] AJAM L, TRABELSI A, KAMMOUN Z. Valorisation of face mask waste in mortar[J]. Innovative Infrastructure Solutions, 2021, 7(1): 130. [28] RAN T, PANG J Y, LIU Y S, et al. Improving concrete fatigue resistance with COVID-19 rubber gloves: an innovative sustainable approach[J]. Case Studies in Construction Materials, 2022, 18: e01914. [29] KILMARTIN-LYNCH S, ROYCHAND R, SABERIAN M, et al. A sustainable approach on the utilisation of COVID-19 plastic based isolation gowns in structural concrete[J]. Case Studies in Construction Materials, 2021, 17: e01408. [30] KILMARTIN-LYNCH S, SABERIAN M, LI J, et al. Preliminary evaluation of the feasibility of using polypropylene fibres from COVID-19 single-use face masks to improve the mechanical properties of concrete[J]. Journal of Cleaner Production, 2021, 296: 126460. [31] AHMED W, LIM C W. Effective recycling of disposable medical face masks for sustainable green concrete via a new fiber hybridization technique[J]. Construction and Building Materials, 2022, 344: 128245. [32] SABERIAN M, LI J, KILMARTIN-LYNCH S, et al. Repurposing of COVID-19 single-use face masks for pavements base/subbase[J]. Science of the Total Environment, 2021, 769: 145527. [33] 闭东民, 孔纲强, 陈 庚, 等. 废弃口罩加筋固化土的强度特性与破坏模式[J]. 防灾减灾工程学报, 2022, 42(5): 993-998+1009. BI D M, KONG G Q, CHEN G, et al. Strength characteristics and failure mode of solidified soil reinforced by waste masks[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(5): 993-998+1009 (in Chinese). [34] 肖天祥, 高文华, 张宗堂, 等. 废弃口罩加筋的煤矸石路基粗粒土填料动力特性试验研究[J]. 防灾减灾工程学报, 2024, 44(2): 426-433. XIAO T X, GAO W H, ZHANG Z T, et al. Experimental study on dynamic characteristics of coal gangue roadbed filler reinforced with waste masks[J]. Journal of Disaster Prevention and Mitigation Engineering, 2024, 44(2): 426-433 (in Chinese). [35] MOHAN H T, JAYANARAYANAN K, MINI K M. A sustainable approach for the utilization of PPE biomedical waste in the construction sector[J]. Engineering Science and Technology, an International Journal, 2022, 32: 101060. [36] KONIORCZYK M, BEDNARSKA D, MASEK A, et al. Performance of concrete containing recycled masks used for personal protection during coronavirus pandemic[J]. Construction and Building Materials, 2022, 324: 12671. [37] LI Z P, ZHANG Z G, FEI M G, et al. Upcycling waste mask PP microfibers in Portland cement paste: surface treatment by graphene oxide[J]. Materials Letters, 2022, 318: 132238. [38] WIRYADI I G G, WIRAWAN I P A P, WIJAYA I M W, et al. The compressive strength of concrete with addition of single-use mask waste fiber[C]. Proceedings 5th International Conference of Sustainable Development (ICSD), 2021. 2022: 131-139. [39] IDREES M, AKBAR A, MOHAMED A M, et al. Recycling of waste facial masks as a construction material, a step towards sustainability[J]. Materials, 2022, 15(5): 1810. [40] WANG G, LI J, SABERIAN M, et al. Use of COVID-19 single-use face masks to improve the rutting resistance of asphalt pavement[J]. Science of the Total Environment, 20, 826: 154118. [41] 魏 欢, 郑 亮, 闫文俊, 等. 一次性医用口罩作纤维对沥青混合料路用性能的影响[J]. 建材世界, 2022, 43(3): 26-29. WEI H, ZHENG L, YAN W J, et al. Investigate on road performance of asphalt mixture using disposable medical masks as fibers[J]. The World of Building Materials, 2022, 43(3): 26-29 (in Chinese). [42] 马立纲, 葛生深, 赵增刚, 等. 一次性医用口罩改性沥青的流变性能研究[J]. 武汉理工大学学报(交通科学与工程版), 2022, 46(3): 519-522+527. MA L G, GE S S, ZHAO Z G, et al. Study on rheological properties of modified asphalt for disposable medical masks[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2022, 46(3): 519-522+527 (in Chinese). [43] ZHAO Z G, WU S P, LIU Q T, et al. Recycling waste disposable medical masks in improving the performance of asphalt and asphalt mixtures[J]. Construction and Building Materials, 2022, 337: 127621. [44] CASTELLOTE M, JIMÉNEZ-RELINQUE E, GRANDE M, et al. Face mask wastes as cementitious materials: a possible solution to a big concern[J]. Materials, 2022, 15(4): 1371. [45] 程培峰, 郑春萌, 张展铭, 等. 废旧口罩熔喷布对沥青及混合料性能影响研究[J]. 森林工程, 2021, 37(6): 126-134. CHENG P F, ZHENG C M, ZHANG Z M, et al. Study on the influence of melt-blown cloth of waste mask on the performance of asphalt and mixture[J]. Forest Engineering, 2021, 37(6): 126-134 (in Chinese). [46] ABDULLAH G M S, EL AAL A A. Assessment of the reuse of Covid-19 healthy personal protective materials in enhancing geotechnical properties of Najran’s soil for road construction: numerical and experimental study[J]. Journal of Cleaner Production, 2021, 320: 12877. [47] 张建伟, 李 想, 韩智光, 等. 废弃口罩加筋酶诱导碳酸盐沉淀固化砂土的抗剪强度特性[J]. 复合材料学报, 2024, 41(1): 426-437. ZHANG J W, LI X, HAN Z G, et al. Shear strength characteristics of sand solidified by enzyme-induced carbonate precipitation with waste face mask reinforcement[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 426-437 (in Chinese). [48] 谢嘉璇, 曾有旭, 储洪强, 等. 废弃口罩纤维增强砂浆的性能研究[J]. 混凝土, 2022(9): 152-155. XIE J X, ZENG Y X, CHU H Q, et al. Properties of disposable medical masks fiber reinforced mortar[J]. Concrete, 2022(9): 152-155 (in Chinese). [49] GOLDFEIN S. Fibrous reinforcement for Portland cement[J]. Modern Plastics, 1965, 42(8): 156-160. [50] WALTON P L, MAJUMDAR A J. Cement-based composites with mixtures of different types of fibres[J]. Composites, 1975, 6(5): 209-216. [51] KAKOOEI S, AKIL H M, JAMSHIDI M, et al. The effects of polypropylene fibers on the properties of reinforced concrete structures[J]. Construction and Building Materials, 2012, 27(1): 73-77. [52] KARAHAN O, ATI C D. The durability properties of polypropylene fiber reinforced fly ash concrete[J]. Materials & Design, 2011, 32(2): 1044-1049. [53] OSTERTAG C P, YI C K, VONDRAN G. Tensile strength enhancement in interground fiber cement composites[J]. Cement and Concrete Composites, 2001, 23(4/5): 419-425. [54] JIANG H T, CAI Y, LIU J. Engineering properties of soils reinforced by short discrete polypropylene fiber[J]. Journal of Materials in Civil Engineering, 2010, 22(12): 1315-1. [55] ABTAHI S M, SHEIKHZADEH M, HEJAZI S M. Fiber-reinforced asphalt-concrete: a review[J]. Construction and Building Materials, 2010, 24(6): 871-877. [56] FARAJ R H, SHERWANI A F H, DARAEI A. Mechanical, fracture and durability properties of self-compacting high strength concrete containing recycled polypropylene plastic particles[J]. Journal of Building Engineering, 2019, 25: 100808. [57] 中华人民共和国住房和城乡建设部. 混凝土结构工程施工质量验收规范: GB 50204—2015[S]. 北京: 中国建筑工业出版社, 2015. The Professional Standards Compilation Group of People’s Republic of China. Code for quality acceptance of concrete structure construction: GB 50204—2015[S]. Beijing: China Planning Press, 2015 (in Chinese). [58] RAN T, PANG J Y, ZOU J Q. An emerging solution for medical waste: reuse of COVID-19 protective suit in concrete[J]. Sustainability, 2022, 14(16): 10045. [59] 王德银, 唐朝生, 李 建, 等. 纤维加筋非饱和黏性土的剪切强度特性[J]. 岩土工程学报, 2013, 35(10): 1933-1940. WANG D Y, TANG C S, LI J, et al. Shear strength characteristics of fiber-reinforced unsaturated cohesive soils[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1933-1940 (in Chinese). [60] 熊 雨, 邓华锋, 彭 萌, 等. 四种人工合成纤维加筋黄土的抗剪特性[J]. 长江科学院院报, 2022, 39(1): 122-126+1. XIONG Y, DENG H F, PENG M, et al. Shear properties of loess reinforced with four synthetic fibers[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(1): 122-126+1 (in Chinese). [61] 张 嘎, 王 刚, 尹振宇, 等. 土的基本特性及本构关系[J]. 土木工程学报, 2020, 53(2): 105-118. ZHANG G, WANG G, YIN Z Y, et al. A critical review on the research of fundamental behavior and constitutive relationship of the soil[J]. China Civil Engineering Journal, 2020, 53(2): 105-118 (in Chinese). [62] 陈永辉, 赵维炳, 汪志强. 一个加筋复合土体的本构关系[J]. 水利学报, 2002, 33(12): 26-32. CHEN Y H, ZHAO W B, WANG Z Q. The constitutive relationship of reinforced soil[J]. Journal of Hydraulic Engineering, 2002, 33(12): 26-32 (in Chinese). [63] 陈永辉, 施建勇, 马文斌. 土工织物加筋堤坝复合有限元分析方法[J]. 水利学报, 2003, 34(1): 28-33. CHEN Y H, SHI J Y, MA W B. Composite FEM analysis on geotextile-reinforced embankment[J]. Journal of Hydraulic Engineering, 2003, 34(1): 28-33 (in Chinese). |
| [1] | 张增起, 李思义, 刘晓明, 马善亮, 邵阳, 陈杰, 杜伟杰. 多源固废协同制备磷酸镁水泥研究进展[J]. 硅酸盐通报, 2025, 44(4): 1191-1207. |
| [2] | 吴廷杰, 王春益, 杜向琴, 袁雪冰. 静力荷载下橡胶水泥砂浆力学性能及微观结构研究[J]. 硅酸盐通报, 2025, 44(4): 1438-1447. |
| [3] | 苏骏, 司渊, 蔡新华, 王亚民. 钢渣粉对PE-ECC基本力学性能的影响[J]. 硅酸盐通报, 2025, 44(4): 1367-1376. |
| [4] | 王紫嫣, 孙涛, 欧阳高尚. 过硫磷石膏矿渣水泥性能调控研究进展[J]. 硅酸盐通报, 2025, 44(4): 1208-1226. |
| [5] | 国爱丽, 张守昆, 刘学, 吕茂荣, 卢爽. 循环流化床灰渣的研究现状综述[J]. 硅酸盐通报, 2025, 44(4): 1227-1242. |
| [6] | 赵英良, 郑勇, 崔凯, 申培亮, 陶勇, 潘智生. 高活性碳化钢渣对水泥基复合材料水化与力学性能的影响[J]. 硅酸盐通报, 2025, 44(4): 1306-1318. |
| [7] | 邓恺, 李华兵, 袁淑婷, 郭晓潞. 污泥焚烧灰渣在水泥中资源化利用的环境影响评价[J]. 硅酸盐通报, 2025, 44(4): 1346-1356. |
| [8] | 李祖仲, 毛浩天, 王亮, 吴志宽, 文硕, 刘卫东. 混凝土早强修补材料基准水泥配合比优化研究[J]. 硅酸盐通报, 2025, 44(3): 802-810. |
| [9] | 范淋, 杨曌, 祁小龙, 邓方茜. SMAF增强PP/PVA混杂纤维工程水泥基复合材料拉伸性能[J]. 硅酸盐通报, 2025, 44(3): 811-820. |
| [10] | 刘成, 刘一鸣, 叶群水, 胡涛. 准静态和冲击荷载下应变硬化水泥基复合材料剪切性能研究[J]. 硅酸盐通报, 2025, 44(3): 821-833. |
| [11] | 张鹏, 吴靖江, 张承实, 尉晓雪, 代小兵. 纳米SiO2和混杂纤维增强环氧树脂水泥基修复材料的抗折性能和微观结构[J]. 硅酸盐通报, 2025, 44(3): 834-841. |
| [12] | 王立成, 邹凯. 水浸-室内环境下开裂微生物砂浆的长期修复能力试验研究[J]. 硅酸盐通报, 2025, 44(3): 842-851. |
| [13] | 王丹, 薛善彬, 白如飞, 郭哲名. 基于低场核磁共振的硫铝酸盐水泥砂浆孔结构演变研究[J]. 硅酸盐通报, 2025, 44(3): 852-861. |
| [14] | 孙吉书, 刘岚彬, 薛丹璇, 陈永昊. 基于多源异构的建筑垃圾再生料性能影响研究[J]. 硅酸盐通报, 2025, 44(3): 1091-1101. |
| [15] | 朱贵旺, 秦磊, 丁蔚健, 李坪峰, 孙明. 基于声发射参数的超材料对水泥基材料弯曲韧性影响研究[J]. 硅酸盐通报, 2025, 44(2): 424-433. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||