硅酸盐通报 ›› 2025, Vol. 44 ›› Issue (4): 1243-1254.DOI: 10.16552/j.cnki.issn1001-1625.2024.1556
余沁昕, 刘问
收稿日期:2024-12-16
修订日期:2025-01-23
出版日期:2025-04-15
发布日期:2025-04-18
通信作者:
刘 问,博士,副教授。E-mail:liuwen@bjfu.edu.cn
作者简介:余沁昕(2002—),男,硕士研究生。主要从事生物炭混凝土的研究。E-mail:yuqinxin18@163.com
基金资助:YU Qinxin, LIU Wen
Received:2024-12-16
Revised:2025-01-23
Published:2025-04-15
Online:2025-04-18
摘要: 生物炭是一种生态的负碳材料,将其适量添入混凝土,可以提高混凝土的力学性能和耐久性,但生物炭能否作为混凝土用火山灰质材料及生物炭是否具有火山灰活性尚存在争议。对此,本文对生物炭火山灰活性、生物炭对混凝土力学性能影响及生物炭火山灰活性提高措施等方面进行了文献调研和综述分析。结果表明:生物炭具有火山灰活性,且其火山灰活性不受烧失量影响,而活性SiO2含量是生物炭火山灰活性的决定因素;高的生物炭火山灰活性可以促进火山灰反应和水化反应,对混凝土抗压强度产生有利影响;控制热解温度和磨细处理有助于提高生物炭的火山灰活性,但活化处理对生物炭火山灰活性影响还需深入研究。
中图分类号:
余沁昕, 刘问. 混凝土用生物炭火山灰活性研究综述[J]. 硅酸盐通报, 2025, 44(4): 1243-1254.
YU Qinxin, LIU Wen. Pozzolanic Activity of Biochar Used in Concrete: a Review[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1243-1254.
| [1] CHEN L, ZHOU T, YANG J Z, et al. A review on the roles of biochar incorporated into cementitious materials: mechanisms, application and perspectives[J]. Construction and Building Materials, 2023, 409: 134204. [2] QING L B, ZHANG H, ZHANG Z K. Effect of biochar on compressive strength and fracture performance of concrete[J]. Journal of Building Engineering, 2023, 78: 107587. [3] SINGH H, NORTHUP B K, RICE C W, et al. Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: a meta-analysis[J]. Biochar, 2022, 4(1): 8. [4] GUPTA S, KUA H W, PANG S D. Effect of biochar on mechanical and permeability properties of concrete exposed to elevated temperature[J]. Construction and Building Materials, 2020, 234: 117338. [5] YANG X, YOU M, LIU S Y, et al. Microbial responses towards biochar application in potentially toxic element (PTE) contaminated soil: a critical review on effects and potential mechanisms[J]. Biochar, 2023, 5(1): 57. [6] 谭康豪, 邹 亚, 吴 维, 等. 生物炭的理化特性及在建筑材料领域的研究进展[J]. 建筑科学, 2021, 37(2): 154-164. TAN K H, ZOU Y, WU W, et al. Research progress on the physicochemical properties of biochar and its application in the field of building materials[J]. Building Science, 2021, 37(2): 154-164 (in Chinese). [7] BARBHUIYA S, BHUSAN DAS B, KANAVARIS F. Biochar-concrete: a comprehensive review of properties, production and sustainability[J]. Case Studies in Construction Materials, 2024, 20: e02859. [8] SU Y L, QU F L, MENG Y, et al. Microbial-induced carbonate precipitation (MICP) modified biochar for low-carbon cementitious materials[J]. Construction and Building Materials, 2024, 451: 138644. [9] ASTM International. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete: ASTM C618-17a[S]. West Conshohocken: ASTM International, 2017. [10] 国家市场监督管理总局, 国家标准化管理委员会. 用于水泥中的火山灰质混合材料: GB/T 2847—2022[S]. 北京: 中国标准出版社, 2022. State Administration for Market Regulation, National Standardization Administration. Pozzolanic materials use for cement production: GB/T 2847—2022[S]. Beijing: Standards Press of China, 2022 (in Chinese). [11] 时雅倩, 关渝珊, 葛伟哲, 等. 粉煤灰建材化增值利用: 最新技术与未来展望[J]. 煤炭学报, 2024, 49(6): 2860-2875. SHI Y Q, GUAN Y S, GE W Z, et al. Value-added utilization of pulverized fuel ash as construction materials: state-of-the-art technologies and future prospects[J]. Journal of China Coal Society, 2024, 49(6): 2860-2875 (in Chinese). [12] ZAID O, ALSHARARI F, AHMED M. Utilization of engineered biochar as a binder in carbon negative cement-based composites: a review[J]. Construction and Building Materials, 2024, 417: 135246. [13] 陈 丽, 周长顺, 蒋晨辉. 偏高岭土对活性粉末混凝土力学性能及微观结构的影响[J]. 硅酸盐通报, 2021, 40(4): 1162-1169. CHEN L, ZHOU C S, JIANG C H. Effect of metakaolin on mechanical properties and microstructure of reactive powder concrete[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(4): 1162-1169 (in Chinese). [14] 高 绮, 刘 霖, 宋向阳, 等. 矿渣地质聚合物增强水泥固化Zn2+及苯酚污染土强度研究[J]. 内蒙古工业大学学报(自然科学版), 2024, 43(1): 77-81. GAO Q, LIU L, SONG X Y, et al. Enhancing strength of cement solidified Zn2+ and phenol contaminated soil with slag geopolymer[J]. Journal of Inner Mongolia University of Technology (Natural Science Edition), 2024, 43(1): 77-81 (in Chinese). [15] 刘 坤, 刘华新, 刘 娜. 稻壳灰混凝土的性能研究进展[J]. 混凝土与水泥制品, 2023(9): 100-104. LIU K, LIU H X, LIU N. Research progress on properties of rice husk ash concrete[J]. China Concrete and Cement Products, 2023(9): 100-104 (in Chinese). [16] SANDHU R K, SIDDIQUE R. Influence of rice husk ash (RHA) on the properties of self-compacting concrete: a review[J]. Construction and Building Materials, 2017, 153: 751-764. [17] GHASEMINEJAD A, CHEESMAN C R, AL-TABBA A H, et al. The inclusion of acidic and stormwater flows in concrete: a review of the effects on durability and the environment[J]. Journal of Cleaner Production, 2022, 334: 166-177. [18] UPIĆ S, MALEEV M, RADONJANIN V, et al. Reactivity and pozzolanic properties of biomass ashes generated by wheat and soybean straw combustion[J]. Materials, 2021, 14(4): 1004. [19] 王超宇, 戚庭野, 冯国瑞, 等. 煅烧温度对柳叶灰火山灰活性的调控机制[J]. 工程科学学报, 2023, 45(12): 2005-2014. WANG C Y, QI T Y, FENG G R, et al. Study of the regulation mechanism of calcination temperature on the pozzolanic activity of willow leaf ash[J]. Chinese Journal of Engineering, 2023, 45(12): 2005-2014 (in Chinese). [20] 顾 雍, 郑怀礼, 龙腾锐, 等. 污泥焚烧灰渣资源化利用分析[J]. 材料导报, 2020, 34(23): 82-88. GU Y, ZHENG H L, LONG T R, et al. Analysis of the resource utilization of sludge incineration ash[J]. Materials Reports, 2020, 34(23): 82-88 (in Chinese). [21] MANJUNATH B, OUELLET-PLAMONDON C M, DAS B B, et al. Areca nut husk biochar as a sustainable carbonaceous filler for cement: pyrolysis temperature and its effect on characterization, strength, and hydration[J]. Industrial Crops and Products, 2024, 222: 119883. [22] GUPTA S, KUA H W. Carbonaceous micro-filler for cement: effect of particle size and dosage of biochar on fresh and hardened properties of cement mortar[J]. Science of the Total Environment, 2019, 662: 952-962. [23] 王佳雨, 朱玲姣, 黄程鹏, 等. 硅肥和生物质炭添加对毛竹林土壤活性硅组分的影响[J]. 浙江农林大学学报, 2024, 41(3): 496-505. WANG J Y, ZHU L J, HUANG C P, et al. Effects of silicon fertilizer and biochar on active silicon components in Phyllostachys edulis forest soil[J]. Journal of Zhejiang A & F University, 2024, 41(3): 496-505 (in Chinese). [24] 刘 婉, 黄占斌, 程 谊. 农林废弃物生物炭的制备及其应用进展[J]. 材料导报, 2021, 35(13): 78-86. LIU W, HUANG Z B, CHENG Y. Preparation and application progress of biochar from agricultural and forestry wastes[J]. Materials Reports, 2021, 35(13): 78-86 (in Chinese). [25] NAIR J J, SHIKA S, SREEDHARAN V. Biochar amended concrete for carbon sequestration[J]. IOP Conference Series: Materials Science and Engineering, 2020, 936(1): 012007. [26] ZHAO W R, LI J Y, DENG K Y, et al. Effects of crop straw biochars on aluminum species in soil solution as related with the growth and yield of canola (Brassica napus L. ) in an acidic Ultisol under field condition[J]. Environmental Science and Pollution Research International, 2020, 27(24): 30178-30189. [27] 李 立, 夏京亮, 关青锋, 等. 天然火山灰质材料辅助胶凝材料性能研究[J]. 混凝土, 2021(7): 82-85+89. LI L, XIA J L, GUAN Q F, et al. Research on the performance of natural pozzolanic materials as a supplementary cementitious materials[J]. Concrete, 2021(7): 82-85+89 (in Chinese). [28] FANG S W, ZHAO L, RONG G Q, et al. Converting coastal silt into subgrade soil with biochar as reinforcing agent, CO2 adsorbent, and carbon sequestrating material[J]. Journal of Environmental Management, 2023, 344: 118394. [29] MANJUNATH B, OUELLET-PLAMONDON C M, GANESH A, et al. Valorization of coffee cherry waste ash as a sustainable construction material[J]. Journal of Building Engineering, 2024, 97: 110796. [30] MALJAEE H, PAIVA H, MADADI R, et al. Effect of cement partial substitution by waste-based biochar in mortars properties[J]. Construction and Building Materials, 2021, 301: 124074. [31] CHEN X, LI J S, XUE Q, et al. Sludge biochar as a green additive in cement-based composites: mechanical properties and hydration kinetics[J]. Construction and Building Materials, 2020, 262: 120723. [32] LIU W. Carbon sequestration in bamboo biochar mortar[M]//Carbon Dioxide Sequestration in Cementitious Construction Materials. Amsterdam: Elsevier, 2024: 319-344. [33] 周文建, 程海丽, 张 雪, 等. 山核桃蒲壳生物炭砂浆基本性能及机理研究[J]. 混凝土与水泥制品, 2020, 6(338): 81-85. ZHOU W J, CHENG H L, ZHANG X, et al. Study on the basic properties and mechanism of Carya cathayensis shell biochar mortar[J]. Concrete and Cement Products, 2020, 6(338): 81-85 (in Chinese). [34] CHEN T F, ZHAO L Y, GAO X J, et al. Modification of carbonation-cured cement mortar using biochar and its environmental evaluation[J]. Cement and Concrete Composites, 2022, 134: 104764. [35] KHALIFA W, NEGM A M, ALSHAREEF Z, et al. Biochar as a partial cement replacement material for sustainable concrete[J]. Sustainability, 2020, 12(18): 68-75. [36] 李嘉昊, 王正君, 贾明霖, 等. 生物质灰混凝土研究方法及现状分析[J]. 广东建材, 2022, 38(9): 30-32. LI J H, WANG Z J, JIA M L, et al. Research methods and current status of biomass ash concrete[J]. Guangdong Building Materials, 2022, 38(9): 30-32 (in Chinese). [37] 许 鹏, 许昌东, 王正君, 等. 生物质秸秆灰活性分析及对混凝土力学特性的影响[J]. 混凝土, 2020(3): 108-112+116. XU P, XU C D, WANG Z J, et al. Activity analysis of biomass strawash and its effect on mechanical properties of concrete[J]. Concrete, 2020(3): 108-112+116 (in Chinese). [38] GUPTA S, MAHMOOD A H. A multi-method investigation into rheological properties, hydration, and early-age strength of cement composites with admixtures recovered from inorganic and bio-based waste streams[J]. Construction and Building Materials, 2022, 347: 128529. [39] CHOI W C, YUN H D, LEE J Y. Mechanical properties of mortar containing bio-char from pyrolysis[J]. Journal of the Korea Institute for Structural Maintenance and Inspection, 2012, 16(3): 67-74. [40] CHEN L, WANG L, ZHANG Y Y, et al. Roles of biochar in cement-based stabilization/solidification of municipal solid waste incineration fly ash[J]. Chemical Engineering Journal, 2022, 430: 132972. [41] LI Y Q, LIN H, LI Y, et al. Carbon sequestration of silica-rich biochar in cement accompanied by the pozzolanic effect[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(37): 13826-13839. [42] HARIS JAVED M, ALI SIKANDAR M, AHMAD W, et al. Effect of various biochars on physical, mechanical, and microstructural characteristics of cement pastes and mortars[J]. Journal of Building Engineering, 2022, 57: 104850. [43] DE CARVALHO GOMES S, ZHOU J L, ZENG X H, et al. Water treatment sludge conversion to biochar as cementitious material in cement composite[J]. Journal of Environmental Management, 2022, 306: 114463. [44] ALI D, AGARWAL R, HANIFA M, et al. Thermo-physical properties and microstructural behaviour of biochar-incorporated cementitious material[J]. Journal of Building Engineering, 2023, 64: 105695. [45] 万惠文, 陈 超, 吴有武, 等. 微硅粉的物化特性及对混凝土孔结构的影响[J]. 混凝土, 2013(12): 77-81. WAN H W, CHEN C, WU Y W, et al. Physicochemical properties of silica fume and its effect to pore-structures of concrete[J]. Concrete, 2013(12): 77-81 (in Chinese). [46] CHEN X, BEATTY D N, MATAR M G, et al. Algal biochar-metal nanocomposite particles tailor the hydration kinetics and compressive strength of Portland cement paste[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(9): 3585-3594. [47] DIXIT A, GUPTA S, PANG S D, et al. Waste Valorisation using biochar for cement replacement and internal curing in ultra-high performance concrete[J]. Journal of Cleaner Production, 2019, 238: 117876. [48] 刘忠玉, 黄通通, 曹永青, 等. 生物炭水泥土渗透特性试验及细观结构分析[J]. 岩土力学, 2024, 45(10): 2929-2936. LIU Z Y, HUANG T T, CAO Y Q, et al. Permeability test and meso-structure analysis of biochar-cement soil[J]. Rock and Soil Mechanics, 2024, 45(10): 2929-2936 (in Chinese). [49] LIU W, LI K N, XU S L. Utilizing bamboo biochar in cement mortar as a bio-modifier to improve the compressive strength and crack-resistance fracture ability[J]. Construction and Building Materials, 2022, 327: 126917. [50] 雷 源, 杨通健, 吴大鹏, 等. 生物炭对混凝土力学性能与收缩性能的影响[J]. 四川建材, 2021, 47(4): 15-16. LEI Y, YANG T J, WU D P, et al. The influence of biochar on the mechanical properties and shrinkage properties of concrete[J]. Sichuan Building Materials, 2021, 47(4): 15-16 (in Chinese). [51] ZHANG Q Y, DONG S K, WU F F, et al. Investigation of the macro performance and mechanism of biochar modified ultra-high performance concrete[J]. Case Studies in Construction Materials, 2024, 21: e03595. [52] UCHEGBULAM I, MOMOH E O, AGAN S A. Potentials of palm kernel shell derivatives: a critical review on waste recovery for environmental sustainability[J]. Cleaner Materials, 2022, 6: 100154. [53] ZHANG Y, MAIERDAN Y, GUO T B, et al. Biochar as carbon sequestration material combines with sewage sludge incineration ash to prepare lightweight concrete[J]. Construction and Building Materials, 2022, 343: 128116. [54] AKHTAR A, SARMAH A K. Novel biochar-concrete composites: manufacturing, characterization and evaluation of the mechanical properties[J]. Science of the Total Environment, 2018, 616: 408-416. [55] MURALI G, WONG L S. A comprehensive review of biochar-modified concrete: mechanical performance and microstructural insights[J]. Construction and Building Materials, 2024, 425: 135986. [56] CHEN L, ZHANG Y Y, WANG L, et al. Biochar-augmented carbon-negative concrete[J]. Chemical Engineering Journal, 2022, 431: 133946. [57] CHEN Y Y, ZHAN B G, GUO B L, et al. Accelerated carbonation curing of biochar-cement mortar: effects of biochar pyrolysis temperatures on carbon sequestration, mechanical properties and microstructure[J]. Construction and Building Materials, 2024, 449: 138446. [58] 孙振平, 闫珠华, 张 挺, 等. 火山灰质材料的火山灰活性检测方法综述[J]. 材料导报, 2024, 38(1): 117-122. SUN Z P, YAN Z H, ZHANG T, et al. Review of pozzolanic activity detection methods for pozzolanic materials[J]. Materials Reports, 2024, 38(1): 117-122 (in Chinese). [59] 金成国, 谢玉松, 范方勇. 宜宾多粮浓香型白酒糟生物炭的成分和结构特征分析[J]. 中国酿造, 2021, 40(3): 139-142. JIN C G, XIE Y S, FAN F Y. Composition and structural feature of biochar derived from distiller’s grains of strong-flavor Baijiu by multiple grains in Yibin[J]. China Brewing, 2021, 40(3): 139-142 (in Chinese). [60] 安 青, 陈德珍, 钦 佩, 等. 生物炭活化技术及生物炭催化剂的研究进展[J]. 中国环境科学, 2021, 41(10): 4720-4735. AN Q, CHEN D Z, QIN P, et al. Research progress of biochar activation technology and biochar catalyst[J]. China Environmental Science, 2021, 41(10): 4720-4735 (in Chinese). [61] 陈志良, 袁志辉, 黄 玲, 等. 生物炭来源、性质及其在重金属污染土壤修复中的研究进展[J]. 生态环境学报, 2016, 25(11): 1879-1884. CHEN Z L, YUAN Z H, HUANG L, et al. Pyrolysis materials, characteristics of biochar and its application on remediation of heavy metal contaminated soil: a review[J]. Ecology and Environmental Sciences, 2016, 25(11): 1879-1884 (in Chinese). [62] KEILUWEIT M, NICO P S, JOHNSON M G, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2010, 44(4): 1247-1253. [63] FIERRO V, MUÑIZ G, BASTA A H, et al. Rice straw as precursor of activated carbons: activation with ortho-phosphoric acid[J]. Journal of Hazardous Materials, 2010, 181(1/2/3): 27-34. [64] FIERRO V, TORNÉ-FERNÁNDEZ V, CELZARD A. Kraft lignin as a precursor for microporous activated carbons prepared by impregnation with ortho-phosphoric acid: synthesis and textural characterisation[J]. Microporous and Mesoporous Materials, 2006, 92(1/2/3): 243-250. [65] LIN X Q, LI W G, GUO Y P, et al. Biochar-cement concrete toward decarbonisation and sustainability for construction: characteristic, performance and perspective[J]. Journal of Cleaner Production, 2023, 419: 138219. [66] GUO S H, PENG J H, LI W, et al. Effects of CO2 activation on porous structures of coconut shell-based activated carbons[J]. Applied Surface Science, 2009, 255(20): 8443-8449. |
| [1] | 钟传利, 苏旭, 张亮, 孔子航, 李海天, 朱庆楠, 常洪雷. 碳化再生细骨料对再生砂浆与混凝土力学性能的影响[J]. 硅酸盐通报, 2025, 44(4): 1468-1476. |
| [2] | 张增起, 李思义, 刘晓明, 马善亮, 邵阳, 陈杰, 杜伟杰. 多源固废协同制备磷酸镁水泥研究进展[J]. 硅酸盐通报, 2025, 44(4): 1191-1207. |
| [3] | 任才富, 王栋民, 房奎圳, 王吉祥, 张信龙, 陈伟. 固废基注浆材料的性能与硬化机理研究[J]. 硅酸盐通报, 2025, 44(4): 1328-1336. |
| [4] | 肖慈宇, 张海燕, 詹建潮, 卜继斌. 渣土余泥免烧轻质高强陶粒的制备及应用[J]. 硅酸盐通报, 2025, 44(4): 1428-1437. |
| [5] | 黄亮, 李北星, 杨宇程, 田沈华. 矿物质降黏剂对再生骨料混凝土流变、力学与耐久性能的影响[J]. 硅酸盐通报, 2025, 44(4): 1458-1467. |
| [6] | 任骏, 余永昆, 毛雯婷, 张毓, 王大富. 基于磷石膏基细轻骨料的砂浆性能研究[J]. 硅酸盐通报, 2025, 44(4): 1420-1427. |
| [7] | 吴廷杰, 王春益, 杜向琴, 袁雪冰. 静力荷载下橡胶水泥砂浆力学性能及微观结构研究[J]. 硅酸盐通报, 2025, 44(4): 1438-1447. |
| [8] | 刘胜源, 王健涛, 张文芹, 刘云鹏. 碳化镁渣基预置轻骨料混凝土的制备与性能研究[J]. 硅酸盐通报, 2025, 44(4): 1377-1385. |
| [9] | 赵英良, 郑勇, 崔凯, 申培亮, 陶勇, 潘智生. 高活性碳化钢渣对水泥基复合材料水化与力学性能的影响[J]. 硅酸盐通报, 2025, 44(4): 1306-1318. |
| [10] | 王凡, 龙广成, 白敏, 石莹莹. 电解锰渣基绿色混凝土性能及环境效应分析[J]. 硅酸盐通报, 2025, 44(4): 1386-1397. |
| [11] | 查文华, 徐源歆, 许涛, 谭雪剑, 张晓丽. 基于RSM的玄武岩纤维固废混凝土力学性能优化研究[J]. 硅酸盐通报, 2025, 44(4): 1408-1419. |
| [12] | 薛刚, 姚文龙, 邵建文, 朱浩君, 许胜, 董伟. 冻融循环对橡胶混凝土抗疲劳性能的影响[J]. 硅酸盐通报, 2025, 44(4): 1448-1457. |
| [13] | 夏陈晨, 徐浩, 周泽, 翟文强, 何智海. 再生微粉自流平砂浆性能及碳排放分析[J]. 硅酸盐通报, 2025, 44(4): 1477-1485. |
| [14] | 赵晓晴, 蒋成, 黄勃, 战楚南, 周子萌, 赵明睿, 杨天风. 碱渣-粉煤灰稳定土力学性能研究[J]. 硅酸盐通报, 2025, 44(4): 1504-1512. |
| [15] | 王丹, 薛善彬, 白如飞, 郭哲名. 基于低场核磁共振的硫铝酸盐水泥砂浆孔结构演变研究[J]. 硅酸盐通报, 2025, 44(3): 852-861. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||