[1] BUKHARI S S, BEHIN J, KAZEMIAN H, et al. Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: a review[J]. Fuel, 2015, 140: 250-266. [2] MCCUSKER L B, BAERLOCHER C. Zeolite structures[M]//Studies in Surface Science and Catalysis. Amsterdam: Elsevier, 2007: 13-37. [3] 王健祥, 袁建华, 刘 晓, 等. 沸石合成后酸位点调控策略及其在VOCs催化氧化中应用进展[J]. 硅酸盐通报, 2024, 43(1): 158-171+182. WANG J X, YUAN J H, LIU X, et al. Advances in acid site modulation strategy after zeolite synthesis and its application in catalytic oxidation of VOCs[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(1): 158-171+182 (in Chinese). [4] 傅金祥, 张延平, 李 森, 等. 改性沸石氨氮吸附剂的制备及其在生活污水处理中的应用[J]. 硅酸盐通报, 2021, 40(5): 1728-1734. FU J X, ZHANG Y P, LI S, et al. Preparation of modified zeolite ammonia nitrogen adsorbent and its application in domestic sewage treatment[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(5): 1728-1734 (in Chinese). [5] 吴国梅, 刘 璐, 何东龙, 等. 沸石改性研究及在环保领域应用前景展望[J]. 硅酸盐通报, 2014, 33(12): 3245-3249. WU G M, LIU L, HE D L, et al. Research of modified zeolites applicated and its prospects in environment potection field[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(12): 3245-3249 (in Chinese). [6] WAHONO S K, STALIN J, ADDAI-MENSAH J, et al. Physico-chemical modification of natural mordenite-clinoptilolite zeolites and their enhanced CO2 adsorption capacity[J]. Microporous and Mesoporous Materials, 2020, 294: 109871. [7] ATES A. Effect of alkali-treatment on the characteristics of natural zeolites with different compositions[J]. Journal of Colloid and Interface Science, 2018, 523: 266-281. [8] RAKHYM A B, SEILKHANOVA G A, MASTAI Y. Physicochemical evaluation of the effect of natural zeolite modification with didodecyldimethylammonium bromide on the adsorption of Bisphenol-A and Propranolol Hydrochloride[J]. Microporous and Mesoporous Materials, 2021, 318: 111020. [9] KRAJINIK D, DAKOVIĆ A, MILOJEVIĆ M, et al. Properties of diclofenac sodium sorption onto natural zeolite modified with cetylpyridinium chloride[J]. Colloids and Surfaces B: Biointerfaces, 2011, 83(1): 165-172. [10] LIU C W, XIN M D, WANG C L, et al. Ag2O nanoparticles encapsulated in Ag-exchanged LTA zeolites for highly selective separation of ethylene/ethane[J]. ACS Applied Nano Materials, 2023, 6(7): 5374-5383. [11] RUSSO A V, TORIGGIA L F, JACOBO S E. Natural clinoptilolite-zeolite loaded with iron for aromatic hydrocarbons removal from aqueous solutions[J]. Journal of Materials Science, 2014, 49(2): 614-620. [12] 谭文渊. 天然沸石的改性与表征及其去除生活废水中LAS的应用研究[D]. 成都: 成都理工大学, 2016. TAN W Y. Study on modification and characterization of natural zeolite and its application in removing LAS from domestic wastewater[D]. Chengdu: Chengdu University of Technology, 2016 (in Chinese). [13] DASHTPEYMA G, SHABANIAN S R. Efficient photocatalytic oxidative desulfurization of liquid petroleum fuels under visible-light irradiation using a novel ternary heterogeneous BiVO4-CuO/modified natural clinoptilolite zeolite[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 445: 115024. [14] WANG C C, CHEN Q, YIN R X, et al. Photothermal effect and antimicrobial properties of cerium-doped bioactive glasses[J]. Ceramics International, 2024, 50(11): 20235-20246. [15] LI Y Z, TAN Q Q, LI T T, et al. Ultrasmall Ag clusters in situ encapsulated into silicalite-1 zeolite with controlled release behavior and enhanced antibacterial activity[J]. Microporous and Mesoporous Materials, 2022, 330: 111617. [16] BEHZADI POUR G, SHAJEE NIA E, DARABI E, et al. Fast NO2 gas pollutant removal using CNTs/TiO2/CuO/zeolite nanocomposites at the room temperature[J]. Case Studies in Chemical and Environmental Engineering, 2023, 8: 100527. [17] 王 程, 梁鑫超, 王李鹏, 等. 不同改性方法对天然斜发沸石组成结构及气体吸附性的影响研究[J]. 矿产保护与利用, 2023, 43(4): 89-95. WANG C, LIANG X C, WANG L P, et al. Influence of different modification method on the composition, structure and gas adsorption property of natural clinoptilolite[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 89-95 (in Chinese). [18] 王 程, 冯 锴, 王李鹏, 等. 几种天然斜发沸石矿的组成结构及性质对比研究[J]. 矿产保护与利用, 2023, 43(2): 148-153. WANG C, FENG K, WANG L P, et al. Comparison of compositions, structures and properties of several natural clinoptilolite zeolites[J]. Conservation and Utilization of Mineral Resources, 2023, 43(2): 148-153 (in Chinese). [19] WANG C, CAO L Y, HUANG J F. Influences of acid and heat treatments on the structure and water vapor adsorption property of natural zeolite[J]. Surface and Interface Analysis, 2017, 49(12): 1249-1255. [20] WANG C, LENG S Z, GUO H D, et al. Quantitative arrangement of Si/Al ratio of natural zeolite using acid treatment[J]. Applied Surface Science, 2019, 498: 143874. [21] ZHOU P F, SHEN Y B, ZHAO S K, et al. Facile synthesis of clinoptilolite-supported Ag/TiO2 nanocomposites for visible-light degradation of xanthates[J]. Applied Surface Science, 2019, 498: 143874. [22] KUMAR S, SINHA A K, HEGDE S G, et al. Influence of mild dealumination on physicochemical, acidic and catalytic properties of H-ZSM-5[J]. Journal of Molecular Catalysis A: Chemical, 2000, 154(1/2): 115-120. [23] ZHANG X H, WANG L L, LIU C B, et al. A bamboo-inspired hierarchical nanoarchitecture of Ag/CuO/TiO2 nanotube array for highly photocatalytic degradation of 2,4-dinitrophenol[J]. Journal of Hazardous Materials, 2016, 313: 244-252. [24] 王维海, 李 钢, 刘丽萍, 等. 干胶法制备钛硅沸石及其催化性能[J]. 催化学报, 2012, 33(7): 1236-1241. WANG W H, LI G, LIU L P, et al. Titanium silicalite synthesized by dry gel conversion method and its catalytic performance[J]. Chinese Journal of Catalysis, 2012, 33(7): 1236-1241 (in Chinese). [25] GUESH K, MÁRQUEZ-ÁLVAREZ C, CHEBUDE Y, et al. Enhanced photocatalytic activity of supported TiO2 by selective surface modification of zeolite Y[J]. Applied Surface Science, 2016, 378: 473-478. [26] LI Y, QIAN W Y, XIA Y, et al. Highly efficient sunlight-driven LSPR-enhanced core-shell Ag dendrite/g-C3N4 composite photocatalysts[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 683: 133018. [27] YU D X, XU L, ZHANG H Z, et al. A new semiconductor-based SERS substrate with enhanced charge collection and improved carrier separation: CuO/TiO2 p-n heterojunction[J]. Chinese Chemical Letters, 2023, 34(7): 107771. [28] WANG W W, ZHANG D L, SUN P X, et al. High efficiency photocatalytic degradation of indoor formaldehyde by Ag/g-C3N4/TiO2 composite catalyst with ZSM-5 as the carrier[J]. Microporous and Mesoporous Materials, 2021, 322: 111134. [29] CHEN Y Y, WANG X L, ZENG Z R, et al. Towards molecular understanding of surface and interface catalytic engineering in TiO2/TiOF2 nanosheets photocatalytic antibacterial under visible light irradiation[J]. Journal of Hazardous Materials, 2024, 465: 133429. [30] GAO Y, DOU H W, MA Y, et al. Antibacterial performance effects of Ag NPs in situ loaded in MOFs nano-supports prepared by post-synthesis exchange method[J]. Journal of Environmental Chemical Engineering, 2024, 12(2): 112133. [31] YANG S Y, ZHANG F, ZHAO J P, et al. Synthesis of inorganic/organic hybrid-shell antibacterial polyurea microcapsules loaded with Ag/TiO2 nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 691: 133814. [32] DOS SANTOS V H J M, PONTIN D, PONZI G G D, et al. Application of Fourier transform infrared spectroscopy (FTIR) coupled with multivariate regression for calcium carbonate (CaCO3) quantification in cement[J]. Construction and Building Materials, 2021, 313: 125413. [33] ZHAO J Q, HU M M, LIU W M, et al. Toughening effects of well-dispersed carboxylated styrene-butadiene latex powders on the properties of oil well cement[J]. Construction and Building Materials, 2022, 340: 127768. |