欢迎访问《硅酸盐通报》官方网站,今天是
分享到:

硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (12): 4629-4638.

• 新型功能材料 • 上一篇    下一篇

纳米颗粒对背面照射半透明超薄Cu(In,Ga)Se2太阳能电池电学性能的影响

裴寒宁, 李航瑜, 许保良, 殷官超   

  1. 武汉理工大学材料科学与工程学院, 武汉 430070
  • 收稿日期:2024-05-31 修订日期:2024-08-05 出版日期:2024-12-15 发布日期:2024-12-19
  • 通信作者: 殷官超,博士,教授。E-mail:guanchao.yin@whut.edu.cn
  • 作者简介:裴寒宁(2002—),女。主要从事光电功能材料的研究。E-mail:glittery@whut.edu.cn
  • 基金资助:
    国家自然科学基金(51802240)

Effects of Nanoparticles on Electrical Performance of Semi-Transparent Ultra-Thin Cu(In,Ga)Se2 Solar Cell under Rear Illumination

PEI Hanning, LI Hangyu, XU Baoliang, YIN Guanchao   

  1. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
  • Received:2024-05-31 Revised:2024-08-05 Published:2024-12-15 Online:2024-12-19

摘要: 本文使用太阳能电池电容模拟中器(SCAPS-1D)和COMSOL Multiphysics软件研究了SiO2纳米颗粒对半透明超薄Cu(In,Ga)Se2(CIGSe)太阳能电池电学性能的影响。结果表明,背面照射时,CIGSe/透明导电氧化物(TCO)背界面附近会产生大量的光生载流子,导致光生电子的背复合对电池性能的影响非常显著。高背复合速率(Sb=1.0×107 cm/s)下,在CIGSe/TCO背界面引入SiO2纳米颗粒对光生载流子浓度降低的影响大于对空间电荷区移动的影响,这导致电池的背复合电流呈下降趋势。然而,此时空穴传输带来的性能改善被高额的背复合电流所掩盖,因此对于背面照射的半透明超薄CIGSe太阳能电池来说,低背复合速率(钝化背界面)能够提高电池性能,这与正面照射时高Sb提升电池性能的结论完全相反。因此,降低背复合对光捕获的消耗来增加短路电流密度是提升电池性能的有效手段。这些发现代表了背面入射机理研究的最新进展,为提高半透明超薄CIGSe太阳能电池的性能提供了新可能。

关键词: 半透明超薄CIGSe太阳能电池, SiO2纳米颗粒, 背面照射, CIGSe/TCO背界面复合, 仿真模拟, 光捕获

Abstract: This research used solar cell capacitance simulator (SCAPS-1D) and COMSOL Multiphysics software to theoretically explore the effects of SiO2 nanoparticles on electrical performance of semi-transparent ultra-thin Cu(In,Ga)Se2 (CIGSe) solar cells. The results show that a large amount of photogenerated carriers are generated near the CIGSe/transparent conductive oxide (TCO) back interface under rear illumination, leading to a significant effect of photogenerated electron back recombination on cell performance. At a high back recombination rate (Sb=1.0×107 cm/s), the introduction of SiO2 nanoparticles at the CIGSe/TCO back interface results in a more significant effect on the reduction of photogenerated carrier concentration than the movement of space charge region, resulting in an overall reduction in back recombination current. However, the performance improvement from hole transport is overshadowed by high back recombination current. Therefore, for semi-transparent ultra-thin CIGSe solar cells under rear illumination, a low back recombination rate (passivated back interface) can improve cell performance, which is completely opposite to the conclusion that high Sb enhances cell performance under front illumination. Meanwhile, reducing the consumption of light capture due to back recombination to increase short-circuit current density is an effective way to improve cell performance. These findings represent the latest advancements in the study of rear illumination mechanisms, offering new possibilities for enhancing the performance of semi-transparent ultra-thin CIGSe solar cells.

Key words: semi-transparent ultra-thin CIGSe solar cell, SiO2 nanoparticle, rear illumination, CIGSe/TCO back interface recombination, multiphysics simulation, light capture

中图分类号: