[1] KIM D, SHIN S S, LEE S M, et al. Flexible and semi-transparent ultra-thin CIGSe solar cells prepared on ultra-thin glass substrate: a key to flexible bifacial photovoltaic applications[J]. Advanced Functional Materials, 2020, 30(36): 2001775. [2] LI Y, YIN G C, TU Y, et al. Ultrathin Cu(In,Ga)Se2 solar cells with a passivated back interface: a comparative study between Mo and In2O3 ∶Sn back contacts[J]. ACS Applied Energy Materials, 2022, 5(7): 7956-7964. [3] MAZZER M, RAMPINO S, SPAGGIARI G, et al. Bifacial CIGS solar cells grown by low temperature pulsed electron deposition[J]. Solar Energy Materials and Solar Cells, 2017, 166: 247-253. [4] CAVALLARI N, PATTINI F, RAMPINO S, et al. Low temperature deposition of bifacial CIGS solar cells on Al-doped zinc oxide back contacts[J]. Applied Surface Science, 2017, 412: 52-57. [5] SAIFULLAH M, GWAK J, YUN J H. Comprehensive review on material requirements, present status, and future prospects for building-integrated semitransparent photovoltaics (BISTPV)[J]. Journal of Materials Chemistry A, 2016, 4(22): 8512-8540. [6] GHARIBSHAHIAN I, OROUJI A A, SHARBATI S. Suitable top cell partners for copper indium gallium selenide-based tandem solar cells to achieve>30% efficiency[J]. Physica Status Solidi (A), 2021, 218(15): 2000796. [7] MANSFIELD L M, KANEVCE A, HARVEY S P, et al. Efficiency increased to 15.2% for ultra-thin Cu(In,Ga)Se2 solar cells[J]. Progress in Photovoltaics: Research and Applications, 2018, 26(11): 949-954. [8] BOUTTEMY M, TRAN-VAN P, GERARD I, et al. Thinning of CIGS solar cells: part I: chemical processing in acidic bromine solutions[J]. Thin Solid Films, 2011, 519(21): 7207-7211. [9] ONWUDINANTI C, VISMARA R, ISABELLA O, et al. Advanced light management based on periodic textures for Cu(In,Ga)Se2 thin-film solar cells[J]. Optics Express, 2016, 24(6): A693-A707. [10] WANG Y C, CHEN C W, SU T Y, et al. Design of suppressing optical and recombination losses in ultrathin CuInGaSe2 solar cells by Voronoi nanocavity arrays[J]. Nano Energy, 2020, 78: 105225. [11] SHIN M J, LEE A, CHO A, et al. Semitransparent and bifacial ultrathin Cu(In,Ga)Se2 solar cells via a single-stage process and light-management strategy[J]. Nano Energy, 2021, 82: 105729. [12] ALSHAHRANI T, KHAN F, AL-RASHEIDI M, et al. Nitrogen-doped graphene quantum dots/polyvinyl alcohol nanocomposite for photon management: application in CIGS photovoltaic cells[J]. Optical Materials, 2024, 151: 115384. [13] YIN G C, SONG M, SCHMID M. Rear point contact structures for performance enhancement of semi-transparent ultrathin Cu(In,Ga)Se2 solar cells[J]. Solar Energy Materials and Solar Cells, 2019, 195: 318-322. [14] LUCABEN J, SEDAGHAT S, SCHMID M. Realistic multidimensional optoelectrical modeling guide for copper indium gallium diselenide solar cells[J]. Solar RRL, 2023, 7(4): 2200867. [15] SIMCHI H, MCCANDLESS B E, MENG T, et al. Structure and interface chemistry of MoO3 back contacts in Cu(In,Ga)Se2 thin film solar cells[J]. Journal of Applied Physics, 2014, 115(3): 033514. [16] SAIFULLAH M, KIM K, SHAHZAD R, et al. Insertion of the AGS layer at the CIGSe/ITO interface: a way to reduce the formation of the GaOx interfacial phase in CIGSe solar cells[J]. Solar Energy Materials and Solar Cells, 2018, 178: 29-37. [17] KELLER J, KISELMAN K, DONZEL-GARGAND O, et al. High-concentration silver alloying and steep back-contact gallium grading enabling copper indium gallium selenide solar cell with 23.6% efficiency[J]. Nature Energy, 2024, 9: 467-478. [18] TU Y, LI Y, KLENK R, et al. Is a passivated back contact always beneficial for Cu(In,Ga)Se2 solar cells?[J]. Progress in Photovoltaics: Research and Applications, 2022, 30(4): 393-400. [19] LI Y, TABERNIG S W, YIN G C, et al. Beyond light-trapping benefits: the effect of SiO2 nanoparticles in bifacial semitransparent ultrathin Cu(In,Ga)Se2 solar cells[J]. Solar RRL, 2022, 6(11): 2200695. [20] LI Y, YIN G C, GAO Y, et al. Sodium control in ultrathin Cu(In,Ga)Se2 solar cells on transparent back contact for efficiencies beyond 12%[J]. Solar Energy Materials and Solar Cells, 2021, 223: 110969. [21] YIN G, BRACKMANN V, HOFFMANN V, et al. Enhanced performance of ultra-thin Cu(In,Ga)Se2 solar cells deposited at low process temperature[J]. Solar Energy Materials and Solar Cells, 2015, 132: 142-147. [22] SIMCHI H, LARSEN J K, KIM K, et al. Improved performance of ultrathin Cu(InGa)Se2 solar cells with a backwall superstrate configuration[J]. IEEE Journal of Photovoltaics, 2014, 4(6): 1630-1635. [23] MAVLONOV A, CHANTANA J, NISHIMURA T, et al. Superstrate-type flexible and bifacial Cu(In,Ga)Se2 thin-film solar cells with In2O3 ∶SnO2 back contact[J]. Solar Energy, 2020, 211: 725-731. [24] HAMADA N, NISHIMURA T, CHANTANA J, et al. Fabrication of flexible and bifacial Cu(In,Ga)Se2 solar cell with superstrate-type structure using a lift-off process[J]. Solar Energy, 2020, 199: 819-825. [25] YANG S C, LIN T Y, OCHOA M, et al. Efficiency boost of bifacial Cu(In, Ga)Se2 thin-film solar cells for flexible and tandem applications with silver-assisted low-temperature process[J]. Nature Energy, 2023, 8: 40-51. [26] NISHIMURA T, CHANTANA J, MAVLONOV A, et al. Device design for high-performance bifacial Cu(In,Ga)Se2 solar cells under front and rear illuminations[J]. Solar Energy, 2021, 218: 76-84. [27] BURGELMAN M, NOLLET P, DEGRAVE S. Modelling polycrystalline semiconductor solar cells[J]. Thin Solid Films, 2000, 361: 527-532. [28] ABOU-RAS D, WAGNER S, STANBERY B J, et al. Innovation highway: breakthrough milestones and key developments in chalcopyrite photovoltaics from a retrospective viewpoint[J]. Thin Solid Films, 2017, 633: 2-12. [29] TU Y, LI Y, YIN G C. Back interface passivation for ultrathin Cu(In,Ga)Se2 solar cells with Schottky back contact: a trade-off of electrical effects[J]. Chinese Physics B, 2023, 32(6): 068101. [30] YIN G C, MANLEY P, SCHMID M. Light trapping in ultrathin CuIn1-xGaxSe2 solar cells by dielectric nanoparticles[J]. Solar Energy, 2018, 163: 443-452. [31] YIN G, MANLEY P, SCHMID M. Light absorption enhancement for ultra-thin Cu(In1-xGax)Se2 solar cells using closely packed 2-D SiO2 nanosphere arrays[J]. Solar Energy Materials and Solar Cells, 2016, 153: 124-130. [32] VAN LARE C, YIN G C, POLMAN A, et al. Light coupling and trapping in ultrathin Cu(In, Ga)Se2 solar cells using dielectric scattering patterns[J]. ACS Nano, 2015, 9(10): 9603-9613. |