[1] KARAKURT I, AYDIN G. Development of regression models to forecast the CO2 emissions from fossil fuels in the BRICS and MINT countries[J]. Energy, 2023, 263: 125650. [2] SHINDELL D, SMITH C J. Climate and air-quality benefits of a realistic phase-out of fossil fuels[J]. Nature, 2019, 573(7774): 408-411. [3] WAKERLEY D, LAMAISON S, WICKS J, et al. Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers[J]. Nature Energy, 2022, 7: 130-143. [4] 侯云廷. 可逆固体氧化物电池LaFeO3基对称电极开发[D]. 北京: 北京科技大学, 2022. HOU Y T. Development of reversible solid oxide cells with LaFeO3-based symmetrical electrodes[D]. Beijing: University of Science and Technology Beijing, 2022 (in Chinese). [5] DRAZ U, DI BARTOLOMEO E, PANUNZI A P, et al. Copper-enhanced CO2 electroreduction in SOECs[J]. ACS Applied Materials & Interfaces, 2024, 16(7): 8842-8852. [6] LIU Z, GUAN D B, WEI W, et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China[J]. Nature, 2015, 524(7565): 335-338. [7] HAUCH A, KÜNGAS R, BLENNOW P, et al. Recent advances in solid oxide cell technology for electrolysis[J]. Science, 2020, 370(6513): eaba6118. [8] 张少威. 固体氧化物电池铁基钙钛矿燃料极的设计与性能研究[D]. 合肥: 中国科学技术大学, 2023. ZHANG S W. Design and performance study of iron-based perovskite fuel electrode for solid oxide battery[D]. Hefei: University of Science and Technology of China, 2023 (in Chinese). [9] YANG X L, WANG S Y, YANG N, et al. Oxygen vacancies induced special CO2 adsorption modes on Bi2MoO6 for highly selective conversion to CH4[J]. Applied Catalysis B: Environmental, 2019, 259: 118088. [10] NAVASA M, FRANDSEN H L, SKAFTE T L, et al. Localized carbon deposition in solid oxide electrolysis cells studied by multiphysics modeling[J]. Journal of Power Sources, 2018, 394: 102-113. [11] SKAFTE T L, GUAN Z X, MACHALA M L, et al. Selective high-temperature CO2 electrolysis enabled by oxidized carbon intermediates[J]. Nature Energy, 2019, 4: 846-855. [12] SHAO X L, BUDIMAN R A, SATO T, et al. Review of factors affecting the performance degradation of Ni-YSZ fuel electrodes in solid oxide electrolyzer cells[J]. Journal of Power Sources, 2024, 609: 234651. [13] HU F, LING Y H, FANG S Y, et al. Engineering dual-exsolution on self-assembled cathode to achieve efficient electrocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental, 2023, 337: 122968. [14] HE F, HOU M Y, ZHU F, et al. Building efficient and durable hetero-interfaces on a perovskite-based electrode for electrochemical CO2 reduction[J]. Advanced Energy Materials, 2022, 12(43): 2202175. [15] LI P, LIU F, YANG B B, et al. Enhanced electrochemical redox kinetics of La0.6Sr0.4Co0.2Fe0.8O3 in reversible solid oxide cells[J]. Electrochimica Acta, 2023, 446: 142069. [16] DU J W, LI C, NIU Y F, et al. Construction of high performance fuel electrode in solid oxide electrolysis cells by tuning the surface oxygen defect to promote electrochemical reduction of CO2[J]. Ceramics International, 2024, 50(13): 22336-22345. [17] DEKA D J, GUNDUZ S, FITZGERALD T, et al. Production of syngas with controllable H2/CO ratio by high temperature co-electrolysis of CO2 and H2O over Ni and Co-doped lanthanum strontium ferrite perovskite cathodes[J]. Applied Catalysis B: Environmental, 2019, 248: 487-503. [18] ZHANG Y X, CUI J Z, LIU Z, et al. Rational design of two-layer Fe-dopedPrBa0.8Ca0.2Co2O6-δ double perovskite oxides for high-performance fuel cell cathodes[J]. The Journal of Physical Chemistry C, 2021, 125(48): 26448-26459. [19] ZHANG Y, SHEN L Y, WANG Y H, et al. Enhanced oxygen reduction kinetics of IT-SOFC cathode with PrBaCo2O5+δ/Gd0.1Ce1.9O2-δ coherent interface[J]. Journal of Materials Chemistry A, 2022, 10(7): 3495-3505. [20] WU M X, ZHOU X L, XU J, et al. Electrochemical performance of La0.3Sr0.7Ti0.3Fe0.7O3-δ/CeO2 composite cathode for CO2 reduction in solid oxide electrolysis cells[J]. Journal of Power Sources, 2020, 451: 227334. [21] YANG X X, SUN K N, MA M J, et al. Achieving strong chemical adsorption ability for efficient carbon dioxide electrolysis[J]. Applied Catalysis B: Environmental, 2020, 272: 118968. [22] QIAN B, WANG S, ZHENG Y F, et al. Ca-Fe co-doped La0.75Sr0.25Cr0.5Mn0.5O3 cathodes with high electrocatalytic activity for direct CO2 electrolysis in solid oxide electrolysis cells[J]. Journal of CO2 Utilization, 2023, 67: 102305. [23] SUN H, HE X W, HUANG X, et al. Modification of LSCM structure by anchoring alloy nanoparticles for efficient CO2 electrolysis[J]. Energy & Fuels, 2024, 38(4): 3436-3444. [24] ZHOU Y J, LIN L, SONG Y F, et al. Pd single site-anchored perovskite cathode for CO2 electrolysis in solid oxide electrolysis cells[J]. Nano Energy, 2020, 71: 104598. [25] DEKA D J, KIM J, GUNDUZ S, et al. Coke formation during high-temperature CO2 electrolysis over AFeO3 (A=La/Sr) cathode: effect of A-site metal segregation[J]. Applied Catalysis B: Environmental, 2021, 283: 119642. [26] ZHANG Y Q, LI J H, SUN Y F, et al. Highly active and redox-stable Ce-doped LaSrCrFeO-based cathode catalyst for CO2 SOECs[J]. ACS Applied Materials & Interfaces, 2016, 8(10): 6457-6463. [27] HUANG Z D, ZHAO Z, QI H Y, et al. Enhancing cathode performance for CO2 electrolysis with Ce0.9M0.1O2-δ (M=Fe, Co, Ni) catalysts in solid oxide electrolysis cell[J]. Journal of Energy Chemistry, 2020, 40: 46-51. [28] ZHANG S W, JIANG Y N, HAN H R, et al. Perovskite oxyfluoride ceramic with in situ exsolved Ni-Fe nanoparticles for direct CO2 electrolysis in solid oxide electrolysis cells[J]. ACS Applied Materials & Interfaces, 2022, 14(25): 28854-28864. [29] SONG Y F, LI H D, XU M G, et al. Fuel cells: infiltrated NiCo alloy nanoparticle decorated perovskite oxide: a highly active, stable, and antisintering anode for direct-ammonia solid oxide fuel cells[J]. Small, 2020, 16(28): 2070154. [30] LI Y H, LI Y, WAN Y H, et al. Perovskite oxyfluoride electrode enabling direct electrolyzing carbon dioxide with excellent electrochemical performances[J]. Advanced Energy Materials, 2019, 9(3): 1803156. [31] LIN W B, LI Y H, SINGH M, et al. Electronic engineering and oxygen vacancy modification of La0.6Sr0.4FeO3-δ perovskite oxide by low-electronegativity sodium substitution for efficient CO2/CO fueled reversible solid oxide cells[J]. Green Chemistry, 2024, 26(6): 3202-3210. [32] ZHANG L H, SUN W, XU C M, et al. Two-fold improvement in chemical adsorption ability to achieve effective carbon dioxide electrolysis[J]. Applied Catalysis B: Environmental, 2022, 317: 121754. [33] LEE S, KIM M, LEE K T, et al. Enhancing electrochemical CO2 reduction using Ce(Mn, Fe)O2 with La(Sr)Cr(Mn)O3 cathode for high-temperature solid oxide electrolysis cells[J]. Advanced Energy Materials, 2021, 11(24): 2100339. [34] QI J, BIAN L Z, TING T, et al. Boosting electrochemical CO2 directly electrolysis by tuning the surface oxygen defect of perovskite[J]. Journal of Power Sources, 2023, 570: 233032. [35] LI P, DONG R Z, WANG Y C, et al. Improving the performance of Pr0.4Sr0.6Co0.2Fe0.7Nb0.1O3-δ-based single-component fuel cell and reversible single-component cells by manufacturing A-site deficiency[J]. Renewable Energy, 2021, 177: 387-396. [36] 刘 红. Sr2MoFeO6-δ基用于CO2电解固体氧化物电解池电极材料的研究[D]. 太原: 山西大学, 2023. LIU H. Study on Sr2MoFeO6-δ based electrode materials for electrolytic solid oxide cells of CO2[D]. Taiyuan: Shanxi University, 2023 (in Chinese). [37] LIU S B, LIU Q X, LUO J L. CO2-to-CO conversion on layered perovskite with in situ exsolved co-Fe alloy nanoparticles: an active and stable cathode for solid oxide electrolysis cells[J]. Journal of Materials Chemistry A, 2016, 4(44): 17521-17528. [38] GAN L Z, YE L T, TAO S W, et al. Titanate cathodes with enhanced electrical properties achieved via growing surface Ni particles toward efficient carbon dioxide electrolysis[J]. Physical Chemistry Chemical Physics, 2016, 18(4): 3137-3143. [39] YE L T, ZHANG M Y, HUANG P, et al. Enhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures[J]. Nature Communications, 2017, 8: 14785. [40] WANG X, WANG H R, HU L, et al. Highly CO2RR activity and electrochemical performance of A-site deficient symmetrical electrode materials (La0.6Sr0.4)1-xFe0.8Ni0.2O3-δ for CO2 electrolysis[J]. Journal of the European Ceramic Society, 2023, 43(15): 6974-6981. [41] SU C, WANG W, SHAO Z P. Cation-deficient perovskites for clean energy conversion[J]. Accounts of Materials Research, 2021, 2(7): 477-488. [42] QI W T, GAN Y, YIN D, et al. Remarkable chemical adsorption of manganese-doped titanate for direct carbon dioxide electrolysis[J]. Journal of Materials Chemistry A, 2014, 2(19): 6904-6915. [43] ABU HAJER A, DARAMOLA D A, TREMBLY J P. Carbon dioxide reduction in solid oxide electrolyzer cells utilizing nickel bimetallic alloys infiltrated into Gd0.1Ce0.9O1.95 (GDC10) scaffolds[J]. Electrochimica Acta, 2024, 485: 144052. [44] HE X W, HUANG X, SUN H, et al. Enhanced CO2 electrolysis with in situ exsolved nanoparticles in the perovskite cathode[J]. New Journal of Chemistry, 2024, 48(13): 5834-5839. |