[1] 武春丽. 两部门联合推广应用高性能混凝土鼓励绿色建筑、保障房、政府投资工程率先应用[J]. 混凝土, 2014(4): 151. WU C L. The two departments jointly promote the application of high-performance concrete and encourage green buildings, affordable housing and government investment projects to take the lead[J]. Concrete, 2014(4): 151 (in Chinese). [2] 胥 悦. 高性能混凝土技术在工业建筑工程中的实际应用[J]. 工业建筑, 2021, 51(8): 30. XU Y. Practical application of high performance concrete technology in industrial construction engineering[J]. Industrial Construction, 2021, 51(8): 30 (in Chinese). [3] 马 骏. 高速公路预制T梁用高性能混凝土性能研究[J]. 中国测试, 2021, 47(6): 124-130. MA J. Research on properties of high performance concrete for precast T-beam of expressway[J]. China Measurement & Test, 2021, 47(6): 124-130 (in Chinese). [4] 谷坤鹏, 王成启. 海工高性能混凝土常用胶凝材料抗硫酸盐侵蚀性能研究[J]. 水运工程, 2010(12): 8-13. GU K P, WANG C Q. Resistance to sulfate corrosion of commonly used cement pastes of high-performance concrete for marine engineering[J]. Port & Waterway Engineering, 2010(12): 8-13 (in Chinese). [5] 王跃全, 薛文强. 洋山港口工程中高性能混凝土施工质量控制[J]. 水运工程, 2005(6): 91-95. WANG Y Q, XUE W Q. Quality control of high-performance concrete coustruction in Yangshan Port engineering[J]. Port & Waterway Engineering, 2005(6): 91-95 (in Chinese). [6] 秦 涛, 韩方玉, 光鉴淼, 等. 铁路桥梁用高性能混凝土的力学性能试验研究[J]. 混凝土, 2021(3): 134-136. QIN T, HAN F Y, GUANG J M, et al. Experimental study on mechanical properties of high performance concrete for railway bridges[J]. Concrete, 2021(3): 134-136 (in Chinese). [7] 韩 玉, 杜海龙, 秦大燕, 等. 平南三桥施工重难点及关键技术研发[J]. 公路, 2019, 64(10): 140-146. HAN Y, DU H L, QIN D Y, et al. Research and development of key technologies and difficulties in the construction of Pingnan third bridge[J]. Highway, 2019, 64(10): 140-146 (in Chinese). [8] FENG D C, LIU Z T, WANG X D, et al. Machine learning-based compressive strength prediction for concrete: an adaptive boosting approach[J]. Construction and Building Materials, 2020, 230: 117000. [9] ASTERIS P G, SKENTOU A D, BARDHAN A, et al. Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models[J]. Cement and Concrete Research, 2021, 145: 106449. [10] 胡以婵, 梁 铭, 谢灿荣, 等. 基于Stacking模型融合的高性能混凝土强度预测方法[J]. 硅酸盐通报, 2023, 42(11): 3914-3926. HU Y C, LIANG M, XIE C R, et al. Strength prediction method of high performance concrete based on Stacking model fusion[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(11): 3914-3926 (in Chinese). [11] 吴贤国, 王 雷, 陈虹宇, 等. 基于随机森林-NSGAⅡ高性能混凝土耐久性配合比的多目标优化研究[J]. 材料导报, 2022, 36(17): 111-117. WU X G, WANG L, CHEN H Y, et al. Multi-objective optimization of high-performance concrete durability mix ratio based on RF-NSGAⅡ[J]. Materials Reports, 2022, 36(17): 111-117 (in Chinese). [12] 韩 斌, 王建栋, 李少平, 等. 基于BP-NSGAⅡ模型的湿喷混凝土参数多目标优化研究[J]. 矿业研究与开发, 2022, 42(05): 173-178. HAN Bin, WANG Jiandong, LI Shaoping, et al. Multi-objective optimization of wet shotcrete parameters based on BP-NSGA I model[J]. MINING R & D, 2022, 42(05): 173-178 (in Chinese). [13] 王鹏博, 尹冠生, 冯俊杰, 等. 基于NSGA-Ⅱ与熵权TOPSIS法的混杂纤维再生混凝土配合比多目标优化[J]. 硅酸盐通报, 2022, 41(12): 4189-4201. WANG P B, YIN G S, FENG J J, et al. Multi-objective optimization of mix proportion of hybrid fiber recycled aggregate concrete based on NSGA-Ⅱ and entropy weight TOPSIS method[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(12): 4189-4201 (in Chinese). [14] CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. August 13-17, 2016, San Francisco, California, USA. ACM, 2016: 785-794. [15] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45: 5-32. [16] WIDIASARI I R, NUGROHO L E, WIDYAWAN. Deep learning multilayer perceptron (MLP) for flood prediction model using wireless sensor network based hydrology time series data mining[C]//2017 International Conference on Innovative and Creative Information Technology (ICITech). Salatiga, Indonesia. IEEE, 2017: 1-5. [17] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. [18] 任秋兵, 李文伟, 李明超, 等. 水工高性能混凝土配合比多目标智能优化设计与分析方法[J]. 水利学报, 2022, 53(1): 98-108. REN Q B, LI W W, LI M C, et al. Multi-objective intelligent optimization design and analysis method for mix proportion of hydraulic high performance concrete[J]. Journal of Hydraulic Engineering, 2022, 53(1): 98-108 (in Chinese). [19] YEH I C. Modeling of strength of high-performance concrete using artificial neural networks[J]. Cement and Concrete Research, 1998, 28(12): 1797-1808. |