硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (10): 3655-3665.
黄伟1,2, 薛葵1, 张子龙1, 曹涌钢1, 王佳亮1, 邱文浩3, 陈冬生3
收稿日期:
2024-03-19
修订日期:
2024-04-21
出版日期:
2024-10-15
发布日期:
2024-10-16
作者简介:
黄 伟(1987—),男,博士,助理研究员。主要从事超高性能混凝土的研究。E-mail:WeiHuang@fzu.edu.cn
基金资助:
HUANG Wei1,2, XUE Kui1, ZHANG Zilong1, CAO Yonggang1, WANG Jialiang1, QIU Wenhao3, CHEN Dongsheng3
Received:
2024-03-19
Revised:
2024-04-21
Published:
2024-10-15
Online:
2024-10-16
摘要: 伴随着我国矿产工业的快速发展,铁尾矿砂的排放量激增,目前对铁尾矿砂主要的处理方式仍以消极堆存、填埋为主,这不仅占据了大量土地资源,还造成了严重的环境污染,因此,铁尾矿砂的大规模消纳迫在眉睫。铁尾矿砂是在特定条件下,将铁矿石通过磨细、浮选或磁选等工艺选取“有用部分”后所排放的废弃物。与天然细集料相比,其颗粒较细,棱角分明且更加坚固,可广泛应用于建筑工程,其中,铁尾矿砂的地域差异、原矿组成、品位、粒度及开采选矿提炼工艺等都会对其理化性质产生较大的影响。铁尾矿砂的活性较低,需采用不同活化方法提高其活性,其中,复合活化是最有效的技术。本文针对国内外铁尾矿砂的建材资源化利用及在其他领域的应用展开了综述,归纳了利用铁尾矿砂制备混凝土对力学性能、耐久性等的影响,讨论了其应用于道路功能材料的关键性能,梳理了铁尾矿砂基砖的应用现状,评估了利用其制备地聚合物的可行性,论述了其在制备介孔分子筛及改良膨胀土方面的优势。
中图分类号:
黄伟, 薛葵, 张子龙, 曹涌钢, 王佳亮, 邱文浩, 陈冬生. 铁尾矿砂的研究与应用进展[J]. 硅酸盐通报, 2024, 43(10): 3655-3665.
HUANG Wei, XUE Kui, ZHANG Zilong, CAO Yonggang, WANG Jialiang, QIU Wenhao, CHEN Dongsheng. Research and Application Progress of Iron Tailings Sand[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(10): 3655-3665.
[1] 易龙生, 吴 倩, 米宏成, 等. 利用铁尾矿制备发泡水泥[J]. 非金属矿, 2021, 44(1): 1-4. YI L S, WU Q, MI H C, et al. Preparation of foamed cement using iron tailings[J]. Non-Metallic Mines, 2021, 44(1): 1-4 (in Chinese). [2] 易龙生, 李 行, 齐莉娜, 等. 铁尾矿用于路面基层材料的研究进展及前景[J]. 矿业研究与开发, 2015, 35(10): 27-32. YI L S, LI H, QI L N, et al. Research progress and application prospect of iron tailings for pavement base material[J]. Mining Research and Development, 2015, 35(10): 27-32 (in Chinese). [3] 刘志强, 郝梓国, 刘 恋, 等. 我国尾矿综合利用研究现状及建议[J]. 地质论评, 2016, 62(5): 1277-1282. LIU Z Q, HAO Z G, LIU L, et al. Status of the comprehensive utilization of tailings in China and suggestions[J]. Geological Review, 2016, 62(5): 1277-1282 (in Chinese). [4] KUMAR S, KUMAR R, BANDOPADHYAY A. Innovative methodologies for the utilisation of wastes from metallurgical and allied industries[J]. Resources, Conservation and Recycling, 2006, 48(4): 301-314. [5] 祝 波, 蒋晓丽, 毛益林, 等. 四川拉拉铜矿尾矿中的铜钴金等有价元素资源及其综合利用[J]. 矿产综合利用, 2023(5): 142-147. ZHU B, JIANG X L, MAO Y L, et al. Valuable element resources and comprehensive utilization in the tailings of lala copper mine, Sichuan Province[J]. Multipurpose Utilization of Mineral Resources, 2023(5): 142-147 (in Chinese). [6] CHU C F, DENG Y F, ZHOU A N, et al. Backfilling performance of mixtures of dredged river sediment and iron tailing slag stabilized by calcium carbide slag in mine goaf[J]. Construction and Building Materials, 2018, 189: 849-856. [7] LI C, SUN H H, BAI J, et al. Innovative methodology for comprehensive utilization of iron ore tailings[J]. Journal of Hazardous Materials, 2010, 174(1/2/3): 71-77. [8] 张淑会, 薛向欣, 金在峰. 我国铁尾矿的资源现状及其综合利用[J]. 材料与冶金学报, 2004, 3(4): 241-245. ZHANG S H, XUE X X, JIN Z F. Current situation and comprehensive utilization of iron ore tailings resources in our country[J]. Journal of Materials and Metallurgy, 2004, 3(4): 241-245 (in Chinese). [9] WEI Z Y, JIA Y S, WANG S Q, et al. Influence of iron tailing filler on rheological behavior of asphalt mastic[J]. Construction and Building Materials, 2022, 352: 129047. [10] XU F, WANG S L, LI T, et al. Mechanical properties and pore structure of recycled aggregate concrete made with iron ore tailings and polypropylene fibers[J]. Journal of Building Engineering, 2021, 33: 101572. [11] 张迎棋. 我国铁矿石选矿工艺与设备综述[J]. 现代矿业, 2023, 39(2): 19-22. ZHANG Y Q. Review on iron ore processing technology and equipment in China[J]. Modern Mining, 2023, 39(2): 19-22 (in Chinese). [12] 刘洪江. 铁矿选矿工艺现状与发展之我见[J]. 世界有色金属, 2017(1): 212-214. LIU H J. Present situation and development of iron ore dressing technology[J]. World Nonferrous Metals, 2017(1): 212-214 (in Chinese). [13] 韩跃新, 张小龙, 高 鹏, 等. 中国铁矿石选矿技术发展与展望[J]. 金属矿山, 2024(2): 1-24. HAN Y X, ZHANG X L, GAO P, et al. Development and prospect of iron ore processing technologies in China[J]. Metal Mine, 2024(2): 1-24 (in Chinese). [14] SUN Y S, ZHANG X L, HAN Y X, et al. A new approach for recovering iron from iron ore tailings using suspension magnetization roasting: a pilot-scale study[J]. Powder Technology, 2020, 361: 571-580. [15] LI Y J, ZHANG Q, YUAN S, et al. High-efficiency extraction of iron from early iron tailings via the suspension roasting-magnetic separation[J]. Powder Technology, 2021, 379: 466-477. [16] YIN W Z, TANG Y. Interactive effect of minerals on complex ore flotation: a brief review[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(5): 571-583. [17] ZHAO J S, NI K, SU Y P, et al. An evaluation of iron ore tailings characteristics and iron ore tailings concrete properties[J]. Construction and Building Materials, 2021, 286: 122968. [18] FONTES W C, MENDES J C, DA SILVA S N, et al. Mortars for laying and coating produced with iron ore tailings from tailing dams[J]. Construction and Building Materials, 2016, 112: 988-995. [19] BANGALORE CHINNAPPA G, KARRA R C. Experimental and statistical evaluations of strength properties of concrete with iron ore tailings as fine aggregate[J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2020, 24(1): 04019038. [20] UGAMA T, EJEH S, AMARTEY D. Effect of iron ore tailing on the properties of concrete[J]. Civil and Environmental Research, 2014, 6: 7-13. [21] SHETTIMA A U, HUSSIN M W, AHMAD Y, et al. Evaluation of iron ore tailings as replacement for fine aggregate in concrete[J]. Construction and Building Materials, 2016, 120: 72-79. [22] LV X D, SHEN W G, WANG L, et al. A comparative study on the practical utilization of iron tailings as a complete replacement of normal aggregates in dam concrete with different gradation[J]. Journal of Cleaner Production, 2019, 211: 704-715. [23] DUAN P, YAN C J, ZHOU W, et al. Fresh properties, compressive strength and microstructure of fly ash geopolymer paste blended with iron ore tailing under thermal cycle[J]. Construction and Building Materials, 2016, 118: 76-88. [24] YANG C M, CUI C, QIN J, et al. Characteristics of the fired bricks with low-silicon iron tailings[J]. Construction and Building Materials, 2014, 70: 36-42. [25] 陈秀云. 铁尾矿砂绿色混凝土构件受力性能试验研究[D]. 武汉: 武汉理工大学, 2017. CHEN X Y. Experimental study on the mechanical properties of the tailing sand green concrete members[D]. Wuhan: Wuhan University of Technology, 2017 (in Chinese). [26] LI X G, BAO Y L, JING S S, et al. Properties of sand grout with iron ore tailings as fine aggregate[J]. Applied Mechanics and Materials, 2013, 405/406/407/408: 2851-2856. [27] CHENG Y H, HUANG F, LI W C, et al. Test research on the effects of mechanochemically activated iron tailings on the compressive strength of concrete[J]. Construction and Building Materials, 2016, 118: 164-170. [28] LI C, SUN H H, YI Z L, et al. Innovative methodology for comprehensive utilization of iron ore tailings: part 2: the residues after iron recovery from iron ore tailings to prepare cementitious material[J]. Journal of Hazardous Materials, 2010, 174(1/2/3): 78-83. [29] YAO R, LIAO S Y, DAI C L, et al. Preparation and characterization of novel glass-ceramic tile with microwave absorption properties from iron ore tailings[J]. Journal of Magnetism and Magnetic Materials, 2015, 378: 367-375. [30] 储诚富, 王雨航, 宗文强. 团聚体级配对固废改良膨胀土耐久性的影响[J]. 建筑材料学报, 2024, 27(3): 237-244. CHU C F, WANG Y H, ZONG W Q. Effect of aggregate grading on durability of expansive soil modified by solid waste[J]. Journal of Building Materials, 2024, 27(3): 237-244 (in Chinese). [31] 高 敏. 铁尾矿制备矿物掺合料和再生集料的关键技术研究[D]. 南京: 东南大学, 2021. GAO M. Research on the key technology of preparing mineral admixture and recycled aggregate from iron tailings[D]. Nanjing: Southeast university, 2021 (in Chinese). [32] 顾晓薇, 徐建宇, 贾泽藩, 等. 极细高硅型铁尾矿制备超高性能混凝土研究[J]. 金属矿山, 2022(1): 71-75. GU X W, XU J Y, JIA Z F, et al. The study on preparation of ultra-high performance concrete utilizing ultra-fine silicon iron tailings[J]. Metal Mine, 2022(1): 71-75 (in Chinese). [33] 王 营, 顾晓薇, 张延年, 等. 铁尾矿砂水泥砂浆抗压强度及微观结构分析[J]. 金属矿山, 2022(1): 60-64. WANG Y, GU X W, ZHANG Y N, et al. Analysis of compressive strength and microstructure of iron tailings sand cement mortar[J]. Metal Mine, 2022(1): 60-64 (in Chinese). [34] 蔡基伟, 封孝信, 赵 丽, 等. 铁尾矿砂混凝土的泌水特性[J]. 武汉理工大学学报, 2009, 31(7): 88-91. CAI J W, FENG X X, ZHAO L, et al. Bleeding behavior of concrete prepared with ferrous mill tailings as manufactured fine aggregates[J]. Journal of Wuhan University of Technology, 2009, 31(7): 88-91 (in Chinese). [35] HU D, GUO Z, WANG Z, et al. Metabolism analysis and eco-environmental impact assessment of two typical cement production systems in Chinese enterprises[J]. Ecological Informatics, 2015, 26: 70-77. [36] CARRASCO E V M, MAGALHAES M D C, SANTOS W J D, et al. Characterization of mortars with iron ore tailings using destructive and nondestructive tests[J]. Construction and Building Materials, 2017, 131: 31-38. [37] HAN F H, LI L, SONG S, et al. Early-age hydration characteristics of composite binder containing iron tailing powder[J]. Powder Technology, 2017, 315: 322-331. [38] KORKMAZ A V. Mechanical activation of diabase and its effect on the properties and microstructure of Portland cement[J]. Case Studies in Construction Materials, 2022, 16: e00868. [39] YANG M J, SUN J H, DUN C Y, et al. Cementitious activity optimization studies of iron tailings powder as a concrete admixture[J]. Construction and Building Materials, 2020, 265: 120760. [40] XU A M, SARKAR S L. Microstructural study of gypsum activated fly ash hydration in cement paste[J]. Cement and Concrete Research, 1991, 21(6): 1137-1147. [41] 冯向鹏, 孙恒虎, 张 娜, 等. 铁尾矿活性优化机理研究[J]. 矿业快报, 2007, 23(6): 21-24. FENG X P, SUN H H, ZHANG N, et al. Study of activity optimization mechanism of iron ore tailing[J]. Express Information of Mining Industry, 2007, 23(6): 21-24 (in Chinese). [42] OJO E B, MUSTAPHA K, TEIXEIRA R S, et al. Development of unfired earthen building materials using muscovite rich soils and alkali activators[J]. Case Studies in Construction Materials, 2019, 11: e00262. [43] YANG Y C, YANG Z L, CHENG Z X, et al. Effects of wet grinding combined with chemical activation on the activity of iron tailings powder[J]. Case Studies in Construction Materials, 2022, 17: e01385. [44] 顾晓薇, 殷士奇, 张伟峰, 等. 铁尾矿砂多元化替代方式对混凝土抗压强度影响研究[J]. 矿业研究与开发, 2021, 41(12): 104-108. GU X W, YIN S Q, ZHANG W F, et al. Study on influence of diversified alternative method of iron tailings sand on compressive strength of concrete[J]. Mining Research and Development, 2021, 41(12): 104-108 (in Chinese). [45] ZHANG W F, GU X W, QIU J P, et al. Effects of iron ore tailings on the compressive strength and permeability of ultra-high performance concrete[J]. Construction and Building Materials, 2020, 260: 119917. [46] HUANG X Y, RANADE R, NI W, et al. Development of green engineered cementitious composites using iron ore tailings as aggregates[J]. Construction and Building Materials, 2013, 44: 757-764. [47] XIONG C S, LI W H, JIANG L H, et al. Use of grounded iron ore tailings (GIOTs) and BaCO3 to improve sulfate resistance of pastes[J]. Construction and Building Materials, 2017, 150: 66-76. [48] PAILLERE A M, BUIL M, SERRANO J J. Effect of fiber addition on the autogenous shrinkage of silica fume[J]. ACI Materials Journal, 1989, 86(2): 139-144. [49] 尹韶宁. 铁尾矿砂混凝土收缩开裂性能研究[D]. 重庆: 重庆大学, 2019. YIN S N. Research on shrinkage and cracking properties of iron tailing sand concrete[D]. Chongqing: Chongqing University, 2019 (in Chinese). [50] 曾雅钰琼, 潘建平, 杨秀英, 等. 铁尾矿在道路基层材料中的应用研究进展[J]. 应用化工, 2018, 47(2): 358-364. ZENG Y Y Q, PAN J P, YANG X Y, et al. Application of iron tailings in road base materials[J]. Applied Chemical Industry, 2018, 47(2): 358-364 (in Chinese). [51] 马怀森, 阙 云, 丁 峰, 等. 改良铁尾矿砂在高速公路路基中的应用研究[J]. 交通科技, 2022(5): 25-29. MA H S, QUE Y, DING F, et al. Study on the application of improved iron tailings sand in highway subgrade[J]. Transportation Science & Technology, 2022(5): 25-29 (in Chinese). [52] ULLAH S, YANG C, CAO L P, et al. Material design and performance improvement of conductive asphalt concrete incorporating carbon fiber and iron tailings[J]. Construction and Building Materials, 2021, 303: 124446. [53] JIANG P, CHEN Y W, WANG W S, et al. Flexural behavior evaluation and energy dissipation mechanisms of modified iron tailings powder incorporating cement and fibers subjected to freeze-thaw cycles[J]. Journal of Cleaner Production, 2022, 351: 131527. [54] 代 聪, 孙恩永, 周荣征, 等. 铁尾矿砂沥青混合料的高温性能[J]. 中国科技论文, 2022, 17(8): 837-843. DAI C, SUN E Y, ZHOU R Z, et al. High-temperature performance of iron tailings asphalt mixture[J]. China Sciencepaper, 2022, 17(8): 837-843 (in Chinese). [55] WEI Z Y, JIA Y S, WANG S Q, et al. Utilization of iron ore tailing as an alternative mineral filler in asphalt mastic: high-temperature performance and environmental aspects[J]. Journal of Cleaner Production, 2022, 335: 130318. [56] 李军卫, 刘长明, 单雪峰. 水泥改良铁尾矿砂路基填料的力学特性[J]. 矿产综合利用, 2021(3): 193-199. LI J W, LIU C M, SHAN X F. Research on mechanical properties of cement-improved iron tailings sand roadbed filler[J]. Multipurpose Utilization of Mineral Resources, 2021(3): 193-199 (in Chinese). [57] 万 磊, 张 智, 宋华松, 等. 干湿循环对碱激发材料固化细铁尾矿砂强度特性的影响分析[J]. 硅酸盐通报, 2020, 39(7): 2223-2231. WAN L, ZHANG Z, SONG H S, et al. Effect of drying and wetting cycles on strength characteristic of alkali-activated materials solidified fine iron tailings sand[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(7): 2223-2231 (in Chinese). [58] PEIXOTO F, ANDER R, SILVA G C, et al. Using iron ore tailings from tailing dams as road material[J]. Journal of Materials in Civil Engineering, 2016, 28(10): 04016102. [59] THEJAS H K, HOSSINEY N. Compressed unfired blocks made with iron ore tailings and slag[J]. Cogent Engineering, 2022, 9(1): 2032975. [60] MYMRIN V, PEDROSO D E, PEDROSO C L, et al. Physical-chemical processes of sustainable construction materials structure formation with iron ore processing tailings and aluminum anodizing sludge[J]. Construction and Building Materials, 2021, 298: 123698. [61] 张全宏, 刘理根, 裴业虎, 等. 选铁尾矿蒸压灰砂砖试验研究[J]. 新型建筑材料, 2011, 38(9): 51-53+78. ZHANG Q H, LIU L G, PEI Y H, et al. Experimental study on making autoclaved lime-sand brick using iron tailings[J]. New Building Materials, 2011, 38(9): 51-53+78 (in Chinese). [62] ZHAO Y L, ZHANG Y M, CHEN T J, et al. Preparation of high strength autoclaved bricks from hematite tailings[J]. Construction and Building Materials, 2012, 28(1): 450-455. [63] LI W S, LEI G Y, XU Y, et al. The properties and formation mechanisms of eco-friendly brick building materials fabricated from low-silicon iron ore tailings[J]. Journal of Cleaner Production, 2018, 204: 685-692. [64] HABERT G, D’ESPINOSE DE LACAILLERIE J B, ROUSSEL N. An environmental evaluation of geopolymer based concrete production: reviewing current research trends[J]. Journal of Cleaner Production, 2011, 19(11): 1229-1238. [65] MCLELLAN B C, WILLIAMS R P, LAY J, et al. Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement[J]. Journal of Cleaner Production, 2011, 19(9/10): 1080-1090. [66] 杨 征. 地质聚合物应用现状及前景展望[J]. 当代化工, 2017, 46(7): 1476-1478. YANG Z. Application status and prospect of geopolymers[J]. Contemporary Chemical Industry, 2017, 46(7): 1476-1478 (in Chinese). [67] 王梦婵, 张惠灵, 陈永亮, 等. 利用低硅铁尾矿制备地质聚合物的研究[J]. 中国矿业, 2019, 28(8): 170-176. WANG M C, ZHANG H L, CHEN Y L, et al. Utilization of low-silicon iron tailings for the preparation of geopolymers[J]. China Mining Magazine, 2019, 28(8): 170-176 (in Chinese). [68] FIGUEIREDO R A M, SILVEIRA A B M, MELO E L P, et al. Mechanical and chemical analysis of one-part geopolymers synthesised with iron ore tailings from Brazil[J]. Journal of Materials Research and Technology, 2021, 14: 2650-2657. [69] RASHAD A M, ZEEDAN S R. A preliminary study of blended pastes of cement and quartz powder under the effect of elevated temperature[J]. Construction and Building Materials, 2012, 29: 672-681. [70] MULLER A C A, SCRIVENER K L, SKIBSTED J, et al. Influence of silica fume on the microstructure of cement pastes: new insights from 1H NMR relaxometry[J]. Cement and Concrete Research, 2015, 74: 116-125. [71] 程金树. 微晶玻璃[M]. 北京: 化学工业出版社, 2006: 24. CHENG J S. Microcrystalline glass[M]. Beijing: Chemical Industry Press, 2006: 24 (in Chinese). [72] 魏瑞丽, 张 婕. 铁尾矿资源化利用研究进展[J]. 矿业工程, 2014, 12(1): 56-59. WEI R L, ZHANG J. Research progress of utilization of iron ore tailings as resources[J]. Mining Engineering, 2014, 12(1): 56-59 (in Chinese). [73] YANG Z H, LIN Q, XIA J X, et al. Preparation and crystallization of glass-ceramics derived from iron-rich copper slag[J]. Journal of Alloys and Compounds, 2013, 574: 354-360. [74] 张锦瑞, 倪 文, 王亚利. 利用铁尾矿制取微晶玻璃的研究[J]. 金属矿山, 2005(11): 72-74. ZHANG J R, NI W, WANG Y L. Research on producing glass ceramics by iron tailings[J]. Metal Mine, 2005(11): 72-74 (in Chinese). [75] REN X Z, ZHANG W, ZHANG Y, et al. Effects of Fe2O3 content on microstructure and mechanical properties of CaO-Al2O3-SiO2 system[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(1): 137-145. [76] 王彬宇, 李 莉, 李 菁, 等. 用工业固体废料合成沸石分子筛的研究进展[J]. 高等学校化学学报, 2021, 42(1): 40-59. WANG B Y, LI L, LI J, et al. Recent progresses on the synthesis of zeolites from the industrial solid wastes[J]. Chemical Journal of Chinese Universities, 2021, 42(1): 40-59 (in Chinese). [77] 顾晓薇, 艾莹莹, 孙 维, 等. 铁尾矿资源化利用现状[J]. 中国有色金属学报, 2022, (1): 1-29. GU X W, AI Y Y, SUN W, et al. Present situation of resource utilization of iron tailings[J]. Transactions of Nonferrous Metals Society of China, 2022, (1): 1-29 (in Chinese). [78] LU C, YANG H M, WANG J, et al. Utilization of iron tailings to prepare high-surface area mesoporous silica materials[J]. The Science of the Total Environment, 2020, 736: 139483. [79] QIU J P, YANG L, SUN X G, et al. Strength characteristics and failure mechanism of cemented super-fine unclassified tailings backfill[J]. Minerals, 2017, 7(4): 58. [80] AMARASINGHE P M, KATTI K S, KATTI D R. Insight into role of clay-fluid molecular interactions on permeability and consolidation behavior of Na-montmorillonite swelling clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(2): 138-146. [81] 黎 伟, 刘观仕, 汪为巍, 等. 湿干循环下压实膨胀土裂隙扩展规律研究[J]. 岩土工程学报, 2014, 36(7): 1302-1308. LI W, LIU G S, WANG W W, et al. Crack propagation law of compacted expansive soils under wetting-drying cycles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1302-1308 (in Chinese). [82] 傅乃强, 徐洪钟, 张苏俊. 纤维粉煤灰改良膨胀土无侧限抗压强度试验[J]. 南京工业大学学报(自然科学版), 2018, 40(1): 133-137. FU N Q, XU H Z, ZHANG S J. Unconfined compressive strength test on expansive soil reinforced with fiber and fly ash[J]. Journal of Nanjing Tech University (Natural Science Edition), 2018, 40(1): 133-137 (in Chinese). [83] 郭坤龙, 储诚富, 叶 浩, 等. 铁尾矿砂-电石渣复合改良膨胀土的直剪试验研究[J]. 合肥工业大学学报(自然科学版), 2020, 43(9): 1263-1268. GUO K L, CHU C F, YE H, et al. Study on direct shear strength of expansive soils improved by iron tailing sands and calcium carbide slag[J]. Journal of Hefei University of Technology (Natural Science), 2020, 43(9): 1263-1268 (in Chinese). [84] CHU C F, ZHANG F, WU D X, et al. Study on mechanical properties of the expansive soil treated with iron tailings sand[J]. Advances in Civil Engineering, 2021, 2021: 9944845. |
[1] | 张会芳, 龚琳洋, 陈洁, 张玉栋, 曹慧, 刘哲颖, 李玉宽, 魏文博, 刘凯宏. 酸激发剂对固废材料活性激发效果的影响[J]. 硅酸盐通报, 2024, 43(8): 2941-2951. |
[2] | 宁高朋, 周正元, 夏光华, 吴文新, 曹天忆, 陈雨珊. 烧结温度及机械活化时间对陶瓷固废制备陶瓷砖的影响[J]. 硅酸盐通报, 2024, 43(8): 3026-3033. |
[3] | 李安, 王彦军, 张志杰, 范志宏. 有机酸活化偏高岭土混凝土性能研究[J]. 硅酸盐通报, 2024, 43(7): 2434-2440. |
[4] | 胡凯伟, 陈轩, 李廷锋, 张俊杰, 高璇, 杨涛. 机械活化对碳酸钠激发矿渣胶凝材料早期性能的影响[J]. 硅酸盐通报, 2024, 43(7): 2577-2583. |
[5] | 汪伟, 赖增成, 谭鹏, 鞠志成, 杨海成, 范志宏. 机制砂与特细砂抗氯盐侵蚀混凝土的制备及性能研究[J]. 硅酸盐通报, 2024, 43(6): 2121-2129. |
[6] | 李子超, 朱俊阁, 乐红志, 马来君, 赵浩宇, 钟佳意. 活化赤泥基胶凝材料的抗冻融性能研究[J]. 硅酸盐通报, 2024, 43(3): 965-976. |
[7] | 朱崟源, 朱干宇, 齐放, 李会泉, 陈艳, 李少鹏, 郭彦霞. 固废基水化硅酸钙制备及综合利用研究进展[J]. 硅酸盐通报, 2024, 43(2): 517-533. |
[8] | 朱利帅, 谢群, 惠婧, 赵鹏, 李俊锋. PVA-铁尾矿砂混凝土抗折性能研究[J]. 硅酸盐通报, 2024, 43(2): 593-602. |
[9] | 王文耀, 罗琦, 鲁刘磊, 赖金, 黄文昊, 庄荣传, 汪峻峰, 马俊. 碱性水热活化选硫尾矿基地聚合物的制备及性能[J]. 硅酸盐通报, 2024, 43(10): 3704-3714. |
[10] | 刘维海, 夏晨康, 张鑫源, 郝名远, 苗洋, 高峰. 液-液溶剂置换法制备超疏水SiO2气凝胶[J]. 硅酸盐通报, 2023, 42(6): 2233-2241. |
[11] | 徐啟斌, 牛香力, 陈婷婷, 陈雨欣, 李杨, 张华, 倪红卫. 煤气化渣合成4A分子筛及其吸附性能研究[J]. 硅酸盐通报, 2023, 42(6): 2251-2261. |
[12] | 袁波, 赵亮, 李博, 陈伟, 唐佩, 曹海琳, 郭悦. 基于亚硝酸根插层LDHs的高效水泥降铬剂研究[J]. 硅酸盐通报, 2023, 42(5): 1542-1550. |
[13] | 胡彪, 李先海, 晏祥政, 赵永庆. 热活化煤矸石粉对基体-骨料界面过渡区性能的影响[J]. 硅酸盐通报, 2023, 42(4): 1315-1322. |
[14] | 向杰, 黎建宏, 王桂芳, 薛清远, 何建桥, 刘书均, 胡青艳. 从粉煤灰中提取白炭黑及其硅烷偶联剂改性工艺研究[J]. 硅酸盐通报, 2023, 42(3): 989-1000. |
[15] | 赵珂萍, 李晓玉, 李瑞红, 李浩然, 杨天佐, 犹家进, 彭康. 固废源CaO基CO2捕集材料的制备与捕集性能研究进展[J]. 硅酸盐通报, 2023, 42(2): 520-530. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||