欢迎访问《硅酸盐通报》官方网站,今天是
分享到:

硅酸盐通报 ›› 2024, Vol. 43 ›› Issue (10): 3634-3644.

• 水泥混凝土 • 上一篇    下一篇

基于AutoML-SHAP的超高性能混凝土抗压强度可解释预测

李硕1, 艾丽菲拉·艾尔肯2, 罗文波2,3, 陈锦杰1   

  1. 1.湘潭大学土木工程学院,湘潭 411105;
    2.长沙学院土木工程学院,长沙 410022;
    3.湘潭大学岩土力学与工程安全湖南省重点实验室,湘潭 411105
  • 收稿日期:2024-03-18 修订日期:2024-06-17 出版日期:2024-10-15 发布日期:2024-10-16
  • 通信作者: 罗文波,博士,教授。E-mail:luowenbo@ccsu.edu.cn
  • 作者简介:李 硕(2000—),男,硕士研究生。主要从事土木工程材料性能与人工智能算法的研究。E-mail:1439179459@qq.com
  • 基金资助:
    国家自然科学基金(12072308)

Interpretable Prediction of Compressive Strength of Ultra-High Performance Concrete Based on AutoML-SHAP

LI Shuo1, AILIFEILA Aierken2, LUO Wenbo2,3, CHEN Jinjie1   

  1. 1. School of Civil Engineering, Xiangtan University, Xiangtan 411105, China;
    2. School of Civil Engineering, Changsha University, Changsha 410022, China;
    3. Hunan Key Laboratory of Geomechanics and Engineering Safety, Xiangtan University, Xiangtan 411105, China
  • Received:2024-03-18 Revised:2024-06-17 Published:2024-10-15 Online:2024-10-16

摘要: 超高性能混凝土(UHPC)的抗压强度与其配比成分之间存在高度非线性的复杂关系,利用传统的统计方法难以准确预测抗压强度。为解决这一问题,本文提出一种基于自动机器学习(AutoML)技术的UHPC抗压强度预测办法,同时引入沙普利加和解释(SHAP)增加其可解释性。AutoML和SHAP的集成有助于构建精确、高效且可解释的模型。结果表明,AutoML模型可自动建立,其准确性、稳健性优于基础模型。SHAP通过全局解释性分析、单样本解释分析以及特征依赖性解释分析,阐明了各个特征因素对抗压强度的影响机理,有助于UHPC抗压强度发展机制以及影响参数重要性的理解,可为UHPC的设计与应用提供参考。

关键词: 超高性能混凝土, 抗压强度, 机器学习, AutoML, SHAP

Abstract: The correlations between compressive strength of UHPC and its mixture composition exhibit pronounced nonlinearity, presenting a challenge for analysis through conventional statistical approaches. In this study, an automatic machine learning (AutoML) technology was proposed to predict compressive strength of UHPC, and shapley additiveex planations (SHAP) was introduced to explain the AutoML model. The integration of AutoML and SHAP offered synergistic benefits, facilitating the development of a precise, efficient, and comprehensively interpretable model. Results demonstrate that AutoML model is automatically built with better accuracy and robustness than the base model. SHAP provides a global explanation, a single sample explanation, and a feature dependence explanation of characterization factors, which explains mechanism of the effect of each characterization factor on compressive strength. SHAP contributes to the understanding of mechanism of UHPC compressive strength development and the importance of characteristic factors, and can provide assistance in the design and application of UHPC.

Key words: ultra-high performance concrete, compressive strength, machine learning, AutoML, SHAP

中图分类号: