[1] 桂 跃, 余志华, 刘海明, 等. 高原湖相泥炭土次固结特性及机理分析[J]. 岩土工程学报, 2015, 37(8): 1390-1398. GUI Y, YU Z H, LIU H M, et al. Secondary consolidation properties and mechanism of plateau lacustrine peaty soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1390-1398 (in Chinese). [2] 张树彬. 土体中腐殖酸对水泥固化软土效果的影响[D]. 长春: 吉林大学, 2007. ZHANG S B. The infection on the humic acid in the progress of solidifying soft soil by cement soil[D]. Changchun: Jilin University, 2007 (in Chinese). [3] 曾玲玲, 洪振舜, 陈福全. 压缩过程中重塑黏土渗透系数的变化规律[J]. 岩土力学, 2012, 33(5): 1286-1292. ZENG L L, HONG Z S, CHEN F Q. A law of change in permeability coefficient during compression of remolded clays[J]. Rock and Soil Mechanics, 2012, 33(5): 1286-1292 (in Chinese). [4] KLAVINS M, APSITE E. Sedimentary humic substances from lakes in Latvia[J]. Environment International, 1997, 23(6): 783-790. [5] ACHARDE F K. Chemische untersuchung des torfes[J]. Crell's Chemical Annals, 1786, 2(6): 391-403. [6] PARSONS J W. Humus chemistry—genesis, composition, reactions[J]. Soil Science, 1983, 135(2): 129-130. [7] 郭小夏, 刘洪涛, 常志州, 等. 有机废物好氧发酵腐殖质形成机理及农学效应研究进展[J]. 生态与农村环境学报, 2018, 34(6): 489-498. GUO X X, LIU H T, CHANG Z Z, et al. Review of humic substances developed in organic waste aerobic composting and its agronomic effect[J]. Journal of Ecology and Rural Environment, 2018, 34(6): 489-498 (in Chinese). [8] TREMBLAY H, DUCHESNE J, LOCAT J, et al. Influence of the nature of organic compounds on fine soil stabilization with cement[J]. Canadian Geotechnical Journal, 2002, 39(3): 535-546. [9] ZHU W, CHIU C F, ZHANG C L, et al. Effect of humic acid on the behaviour of solidified dredged material[J]. Canadian Geotechnical Journal, 2009, 46(9): 1093-1099. [10] 郭丽敏, 李 洲, 朱剑锋, 等. 有机质土的固化试验[J]. 中国科技论文, 2015, 10(9): 1076-1079+1087. GUO L M, LI Z, ZHU J F, et al. Experimental study on the stabilization of organic soil[J]. China Sciencepaper, 2015, 10(9): 1076-1079+1087 (in Chinese). [11] 徐日庆, 郭 印, 刘增永. 人工制备有机质固化土力学特性试验研究[J]. 浙江大学学报(工学版), 2007, 41(1): 109-113. XU R Q, GUO Y, LIU Z Y. Experimental study on mechanical properties of stabilized artificial organic soil[J]. Journal of Zhejiang University (Engineering Science), 2007, 41(1): 109-113 (in Chinese). [12] KANG G O, TSUCHIDA T, KIM Y S, et al. Influence of humic acid on the strength behavior of cement-treated clay during various curing stages[J]. Journal of Materials in Civil Engineering, 2017, 29(8): 04017057. [13] 梁仕华, 周锦程, 罗 祺, 等. 有机质对水泥固化淤泥土的力学特性影响试验研究[J]. 广东工业大学学报, 2019, 36(6): 86-91. LIANG S H, ZHOU J C, LUO Q, et al. An experimental research on the effect of organic matter on mechanical properties of cementing solidified silt[J]. Journal of Guangdong University of Technology, 2019, 36(6): 86-91 (in Chinese). [14] 曹 净, 李松坡, 刘海明, 等. 胡敏酸对水泥土强度的影响及机理[J]. 安全与环境学报, 2021, 21(6): 2571-2576. CAO J, LI S P, LIU H M, et al. On the strength of cement soil affected and effected by the humic acid and its mechanism[J]. Journal of Safety and Environment, 2021, 21(6): 2571-2576 (in Chinese). [15] TIAN M L, HAN L J, MENG Q B. Experimental study on the mechanical performance of grouted specimen with composite ultrafine cement grouts[J]. KSCE Journal of Civil Engineering, 2020, 24(1): 38-48. [16] 征西遥, 刘秀秀, 吴 俊, 等. 超细水泥对固化软土早期抗压强度影响的试验研究[J]. 工程地质学报, 2020, 28(4): 685-696. ZHENG X Y, LIU X X, WU J, et al. Impact of ultra-fine cement on early compressive strength of cement stabilized soft soil[J]. Journal of Engineering Geology, 2020, 28(4): 685-696 (in Chinese). [17] CHEN Q S, YU R H, TAO G L, et al. Microstructure, strength and durability of nano-cemented soils under different seawater conditions: laboratory study[J]. Acta Geotechnica, 2023, 18(3): 1607-1627. [18] YOUNG J F. A review of the mechanisms of set-retardation in Portland cement pastes containing organic admixtures[J]. Cement and Concrete Research, 1972, 2(4): 415-433. [19] THOMPSON M R. Lime reactivity of Illinois soils[J]. Journal of the Soil Mechanics and Foundations Division, 1966, 92(5): 67-92. [20] 曾卫东, 唐雪云, 何泌洲. 深层搅拌法在处理泥炭质土中的应用[J]. 地质灾害与环境保护, 2002, 13(2): 67-69+79. ZENG W D, TANG X Y, HE M Z. Application of cement deep-mixing methodin treatment of peat soil[J]. Journal of Geological Hazards and Environment Preservation, 2002, 13(2): 67-69+79 (in Chinese). [21] 中华人民共和国建设部. 岩土工程勘察规范: GB 50021—2001[S]. 北京: 中国建筑工业出版社, 2004. Ministry of Construction of the People's Republic of China. Code for investigation of geotechnical engineering: GB 50021—2001[S]. Beijing: China Architecture & Building Press, 2004 (in Chinese). [22] 刘叔灼, 巴凌真, 杨医博, 等. 有机质含量对水泥土强度影响的试验研究[J]. 武汉理工大学学报, 2009, 31(7): 40-43. LIU S Z, BA L Z, YANG Y B, et al. Research on the influence of organic content on the strength of cement-stabilized soil[J]. Journal of Wuhan University of Technology, 2009, 31(7): 40-43 (in Chinese). [23] CLARE K E, SHERWOOD P T. Further studies on the effect of organic matter on the setting of soil-cement mixtures[J]. Journal of Applied Chemistry, 1956, 6(8): 317-324. [24] 曹 净, 李贵祥. 胡敏酸对冲洪积黏性土强度影响的试验研究[J]. 硅酸盐通报, 2019, 38(8): 2518-2524+2548. CAO J, LI G X. Experimental research on influence of humic acid on strength of alluvial clay[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(8): 2518-2524+2548 (in Chinese). [25] 兰叶青, 胡琼英, 薛家骅. 胡敏酸对土壤和矿物粘粒分散的影响[J]. 土壤学报, 1998, 35(2): 195-201. LAN Y Q, HU Q Y, XUE J H. Humic acid effect on dispersion of soil and mineral clay[J]. Acta Pedologica Sinica, 1998, 35(2): 195-201 (in Chinese). [26] CAO J, LIU F Y, HUANG S Y, et al. Influence of humic acid on the strength of cement-soil and analysis of its microscopic mechanism[J]. Advances in Civil Engineering, 2022, 2022: 1554204. [27] KLOSTER N, BRIGANTE M, ZANINI G, et al. Aggregation kinetics of humic acids in the presence of calcium ions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 427: 76-82. [28] YOON S H, LEE C H, KIM K J, et al. Effect of calcium ion on the fouling of nanofilter by humic acid in drinking water production[J]. Water Research, 1998, 32(7): 2180-2186. [29] 曹 净, 余再西, 刘海明, 等. 富里酸对红黏土水泥土复合体的侵蚀性试验研究[J]. 昆明理工大学学报(自然科学版), 2015, 40(1): 35-38+83. CAO J, YU Z X, LIU H M, et al. Experimental study on corrosion of red clay-cemented soil composite mass under fulvic acid[J]. Journal of Kunming University of Science and Technology (Natural Science Edition), 2015, 40(1): 35-38+83 (in Chinese). [30] 洪金德, 刘华信. 泥炭土粘结性探讨[J]. 福建化工, 2004, 36(4): 12-14. HONG J D, LIU H X. Exploration of peat soil bonding[J]. Fujian Chemical Industry. 2004, 36(4): 12-14 (in Chinese). [31] BENTZ D P, JENSEN O M, HANSEN K K, et al. Influence of cement particle-size distribution on early age autogenous strains and stresses in cement-based materials[J]. Journal of the American Ceramic Society, 2001, 84(1): 129-135. [32] 汪 洋, 徐玲玲. 水泥粒度分布对水泥性能影响的研究进展[J]. 材料导报, 2010, 24(23): 68-71+80. WANG Y, XU L L. Reasearch progress of the influence of particle size distribution on the properties of cement[J]. Materials Review, 2010, 24(23): 68-71+80 (in Chinese). [33] SCRIVENER K L. The development of microstructure during the hydration of Portland cement[J]. Imperial College London (University of London), 1984, 16(5): 46-48. [34] TSAKALAKIS K, STAMHOLTZIS G A. Correlation of the Blaine value and the d80 size of the cement particle size distribution[J]. ZKG international, 2008, 61(3): 60. [35] 宁宝宽, 陈四利, 刘 斌, 等. 环境侵蚀下水泥土的力学效应试验研究[J]. 岩土力学, 2005, 26(4): 600-603. NING B K, CHEN S L, LIU B, et al. Experimental study of cemented soil under environmental erosion[J]. Rock and Soil Mechanics, 2005, 26(4): 600-603 (in Chinese). [36] LANGE F, MÖRTEL H, RUDERT V. Dense packing of cement pastes and resulting consequences on mortar properties[J]. Cement and Concrete Research, 1997, 27(10): 1481-1488. [37] 牛全林, 冯乃谦, 杨 静. 矿物质超细粉在水泥粉体中填充效果的分析[J]. 硅酸盐学报, 2004, 32(1): 102-106. NIU Q L, FENG N Q, YANG J. Packing of superfine mineral powder in cement[J]. Journal of the Chinese Ceramic Society, 2004, 32(1): 102-106 (in Chinese). [38] 邓祥义, 胡海平. 纳米粉体材料的团聚问题及解决措施[J]. 化工进展, 2002, 21(10): 761-762+787. DENG X Y, HU H P. Problems on reunite of nano-powder and its counter-measures[J]. Chemical Industry and Engineering Progress, 2002, 21(10): 761-762+787 (in Chinese). [39] 李凤生, 刘宏英, 裴重华. 我国超细粉体技术研究中一些重要而急待解决的问题[J]. 化工进展, 1994, 13(3): 46-49+15. LI F S, LIU H Y, PEI C H. Some important problems awaiting solution for ultra-fine particle technology research in China[J]. Chemical Industry and Engineering Progress, 1994, 13(3): 46-49+15 (in Chinese). [40] 孙华峰. 泥炭土环境下UFC水泥土抗腐蚀添加剂试验研究[D]. 昆明: 昆明理工大学, 2023. SUN H F. Experimental research on anti-corrosion additives of UFC cement soil in peat soil environment[D]. Kunming: Kunming University of Science and Technology, 2023 (in Chinese). [41] 中华人民共和国住房和城乡建设部. 建筑基坑支护技术规程: JGJ 120—2012[S]. 北京: 中国建筑工业出版社, 2012. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical regulations for building foundation pit support: JGJ 120—2012[S]. Beijing: China Architecture & Building Press, 2012 (in Chinese). [42] 刘国彬, 王卫东. 基坑工程手册[M]. 第二版. 北京: 中国建筑工业出版社, 2009 LIU G B, WANG W D. Foundation pit engineering manual[M]. 2nd. ed. Beijing: China Architecture & Building Press, 2009 (in Chinese). [43] HENDRIKS C A, WORRELL E, PRICE L, et al. Emission reduction of greenhouse gases from the cement industry[M]//Greenhouse Gas Control Technologies 4. Amsterdam: Elsevier, 1999: 939-944. [44] 崔素萍, 刘 伟. 水泥生产过程CO2减排潜力分析[J]. 中国水泥, 2008(4): 57-59. CUI S P, LIU W. Analysis of the potential for CO2 emission reduction in the cement Production process[J]. China Cement, 2008(4): 57-59 (in Chinese). |