[1] CUI H Z, LO T Y, ALI MEMON S, et al. Analytical model for compressive strength, elastic modulus and peak strain of structural lightweight aggregate concrete[J]. Construction and Building Materials, 2012, 36: 1036-1043. [2] BARBOSA F S, FARAGE M C R, BEAUCOUR A L, et al. Evaluation of aggregate gradation in lightweight concrete via image processing[J]. Construction and Building Materials, 2012, 29: 7-11. [3] 中华人民共和国住房和城乡建设部. 轻骨料混凝土应用技术标准: JGJ/T 12—2019[S]. 北京: 中国建筑工业出版社, 2019. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical standard for application of lightweight aggregate concrete: JGJ/T 12—2019[S]. Beijing: China Construction Industry Press, 2019 (in Chinese). [4] ACI Committee 318. Building code requirements for structural concrete and commentary: ACI-318[S]. Detroit: American Concrete Institute, 2014. [5] YE Y X, LIU J L, ZHANG Z Y, et al. Experimental study of high-strength steel fiber lightweight aggregate concrete on mechanical properties and toughness index[J]. Advances in Materials Science and Engineering, 2020, 2020: 5915034. [6] BADOGIANNIS E, CHRISTIDIS K, TZANETATOS G. Evaluation of the mechanical behavior of pumice lightweight concrete reinforced with steel and polypropylene fibers[J]. Construction and Building Materials, 2019, 196: 443-456. [7] ZHAO M L, ZHAO M S, CHEN M H, et al. An experimental study on strength and toughness of steel fiber reinforced expanded-shale lightweight concrete[J]. Construction and Building Materials, 2018, 183: 493-501. [8] GULER S. The effect of polyamide fibers on the strength and toughness properties of structural lightweight aggregate concrete[J]. Construction and Building Materials, 2018, 173: 394-402. [9] KARAMLOO M, AFZALI-NANIZ O, DOOSTMOHAMADI A. Impact of using different amounts of polyolefin macro fibers on fracture behavior, size effect, and mechanical properties of self-compacting lightweight concrete[J]. Construction and Building Materials, 2020, 250: 118856. [10] AMIN M, TAYEH B A, AGWA I S. Investigating the mechanical and microstructure properties of fibre-reinforced lightweight concrete under elevated temperatures[J]. Case Studies in Construction Materials, 2020, 13: e00459. [11] HOSSEINI M A, ESFAHANI M R. Experimental study on size effect and fracture properties of polypropylene fiber reinforced lightweight aggregate concrete[J]. Periodica Polytechnica Civil Engineering, 2022: 1278-1293. [12] ANWAR HOSSAIN K M. Properties of volcanic pumice based cement and lightweight concrete[J]. Cement and Concrete Research, 2004, 34(2): 283-291. [13] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019. Ministry of Housing and Urban-Rural Development of the People's Republic of China, State Administration of Market Supervision and Administration. Standard for test methods of physical and mechanical properties of concrete: GB/T 50081—2019[S]. Beijing: China Construction Industry Press, 2019 (in Chinese). [14] 龚洛书, 柳春圃. 轻集料混凝土[M]. 北京: 中国铁道出版社, 1996. GONG L S, LIU C P. Lightweight aggregate concrete[M]. Beijing: China Railway Publishing House, 1996 (in Chinese). [15] 胡曙光, 王发洲. 轻集料混凝土[M]. 北京: 化学工业出版社, 2006. HU S G, WANG F Z. Lightweight aggregate concrete[M]. Beijing: Chemical Industry Press, 2006 (in Chinese). [16] 过镇海. 混凝土的强度和本构关系: 原理与应用[M]. 北京: 中国建筑工业出版社, 2004. GUO Z H. Strength and structural relationships of concrete: principles and applications[M]. Beijing: China Construction Industry Press, 2004 (in Chinese). [17] CARRASQUILLO R, NILSON A H, SLATE F. Properties of high-strength concrete subject to short-term loads[J]. Journal Proceedings, 1981, 78(3): 171-178. [18] 中国建筑科学研究院建筑结构研究所. 轻骨料混凝土的研究和应用文集[M]. 北京: 中国建筑工业出版社, 1981. Institute of Building Structures of China Academy of Building Research. Anthology of research and application of lightweight aggregate concrete[M]. Beijing: China Construction Industry Press, 1981 (in Chinese). [19] ZHANG M H, GJVORV O E. Mechanical properties of high-strength lightweight concrete[J]. ACI Materials Journal, 1991, 88(3): 240-247. [20] 中华人民共和国住房和城乡建设部. 混凝土结构设计标准: GB/T 50010—2010[S]. 北京: 中国建筑工业出版社, 2011. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Criteria for design of concrete structures: GB/T 50010—2010[S]. Beijing: China Building Industry Press, 2011 (in Chinese). [21] ROMUALDI J P, BATSON G B. Mechanics of crack arrest in concrete[J]. Journal of the Engineering Mechanics Division, 1963, 89(3): 147-168. [22] INDELICATO F, PAGGI M. Specimen shape and the problem of contact in the assessment of concrete compressive strength[J]. Materials and Structures, 2008, 41(2): 431-441. [23] 牛建刚, 刘洪振, 左付亮, 等. 塑钢纤维轻骨料混凝土抗压强度换算关系试验研究[J]. 硅酸盐通报, 2017, 36(3): 996-1002. NIU J G, LIU H Z, ZUO F L, et al. Experimental study on the compressive strength index conversion relationship of plastic steel fibers reinforced lightweight aggregate concrete[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(3): 996-1002 (in Chinese). [24] 梁炯丰, 程丽红, 王长诚, 等. 废砖再生粗骨料混凝土强度指标换算关系试验研究[J]. 科学技术与工程, 2013, 13(27): 8211-8213. LIANG J F, CHENG L H, WANG C C, et al. Experimental study on relationships between strength indexes of waste brick recycled coarse aggregate concrete[J]. Science Technology and Engineering, 2013, 13(27): 8211-8213 (in Chinese). [25] LIM J C, OZBAKKALOGLU T. Stress-strain model for normal- and light-weight concretes under uniaxial and triaxial compression[J]. Construction and Building Materials, 2014, 71: 492-509. [26] YANG K H, MUN J H, CHO M S, et al. Stress-strain model for various unconfined concretes in compression[J]. ACI Materials Journal, 2014, 111(4): 819. [27] 李平江, 刘巽伯. 高强页岩陶粒混凝土的基本力学性能[J]. 建筑材料学报, 2004, 7(1): 113-116. LI P J, LIU X B. Fundamental mechanical properties of concretewith high strength expanded shale[J]. Journal of Building Materials, 2004, 7(1): 113-116 (in Chinese). [28] CARREIRA D J, CHU K H. Stress-strain relationship for plain concrete in compression[J]. ACI Journal Proceedings, 1985, 82(6): 797-804. |