[1] 蒋勤俭. 国内外装配式混凝土建筑发展综述[J]. 建筑技术, 2010, 41(12): 1074-1077. JIANG Q J. Summary on development of assembled concrete building both home and abroad[J]. Architecture Technology, 2010, 41(12): 1074-1077 (in Chinese). [2] 苏义坤, 曹丽斐, 张智博, 等. 我国装配式建筑领域研究综述及发展态势分析[J]. 建筑技术, 2018, 49(12): 1248-1256. SU Y K, CAO L F, ZHANG Z B, et al. Research review and research tendency analysis of prefabricated construction buildings in China[J]. Architecture Technology, 2018, 49(12): 1248-1256 (in Chinese). [3] 张永新. 现阶段我国装配式建筑的发展[J]. 建筑工程技术与设计, 2019(23): 672. ZHANG Y X. Development of assembled buildings in China at the present stage [J]. Architectural Engineering Technology and Design. 2019(23): 672 (in Chinese). [4] 季晓霞. 浅谈装配式建筑在我国的发展[J]. 建筑·建材·装饰, 2018(2): 157. JI X X. A Brief discussion on the development of prefabricated buildings in China[J]. Architecture, Building Materials and Decoration, 2018(2): 157 (in Chinese). [5] 臧雪猛. 免蒸养预制构件混凝土早期强度快速提升方法研究[D]. 郑州: 华北水利水电大学, 2021. ZANG X M. Research on the method of rapid improvement of early strength of precast concrete without steam curing[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2021 (in Chinese). [6] TAN H B, LI M G, HE X Y, et al. Preparation for micro-lithium slag via wet grinding and its application as accelerator in Portland cement[J]. Journal of Cleaner Production, 2020, 250: 119528. [7] 荣艳群. 蒸汽养护技术在严寒地区混凝土预制构件生产中的应用[J]. 福建水力发电, 2020(1): 48-51. RONG Y Q. Application of steam curing technology in the production of precast concrete components in severe cold area[J]. Fujian hydroelectricity, 2020(1): 48-51 (in Chinese). [8] 苏 扬, 徐志辉, 丑纪能, 等. 蒸养制度对预制构件混凝土早期强度的影响研究[J]. 混凝土与水泥制品, 2019(3): 48-50. SU Y, XU Z H, CHOU J N, et al. Effects research of steam curing system on the early strength of precast concrete[J]. China Concrete and Cement Products, 2019(3): 48-50 (in Chinese). [9] LIU C H, ZHANG Q, ZHAO C Q, et al. Assessment of strength development of soil stabilized with cement and nano SiO2[J]. Construction and Building Materials, 2023, 409: 133889. [10] PRASAD BHATTA D, SINGLA S, GARG R. Microstructural and strength parameters of nano-SiO2 based cement composites[J]. Materials Today: Proceedings, 2021, 46: 6743-6747. [11] QIU H P, WU Y C, YU J C, et al. Effect of calcium-silicate-hydrate (C-S-H) nano-crystals on the hydration rate and early strength of microwave-absorbing cement mortar containing magnetite (Fe3O4) powder[J]. Ceramics International, 2023, 49(23): 39039-39048. [12] DU C, TAN H B, JIAN S W, et al. Compressive strength and hydration process of sodium carbonate-activated superfine slag/marble powder binders[J]. Journal of Building Engineering, 2021, 43: 103121. [13] LI M G, TAN H B, HE X Y, et al. Preparation of nano cement particles by wet-grinding and its effect on hydration of cementitious system[J]. Construction and Building Materials, 2021, 307: 125051. [14] TAN H B, DU C, HE X Y, et al. Enhancement of compressive strength of high-volume fly ash cement paste by wet grinded cement: towards low carbon cementitious materials[J]. Construction and Building Materials, 2022, 323: 126458. [15] 丁向群, 赵欣悦, 徐晓婉, 等. 矿物掺合料对硫铝酸盐水泥-普通硅酸盐水泥复合体系性能的影响[J]. 新型建筑材料, 2020, 47(3): 40-44. DING X Q, ZHAO X Y, XU X W, et al. Effect of admixtures on properties of sulphoaluminate cement-common Portland cement composite system[J]. New Building Materials, 2020, 47(3): 40-44 (in Chinese). [16] 胡建伟, 谢永江, 刘子科, 等. 纳米C-S-H/PCE对硅酸盐-硫铝酸盐复合水泥凝结硬化的影响[J]. 土木与环境工程学报(中英文), 2021, 43(2): 138-147. HU J W, XIE Y J, LIU Z K, et al. Effect of nano-C-S-H/PCE on the setting and hardening process of Portland-sulphoaluminate composite cement[J]. Journal of Civil and Environmental Engineering, 2021, 43(2): 138-147 (in Chinese). [17] 于 锦, 马素花, 李伟峰, 等. 硫铝酸盐对硅酸盐水泥水化及性能的影响[J]. 混凝土, 2016(4): 86-90. YU J, MA S H, LI W F, et al. Influence of sulphoaluminate cement on the hydration and performance of Portland cement[J]. Concrete, 2016(4): 86-90 (in Chinese). [18] 白建飞, 张俊杰, 马保国, 等. 硅酸盐水泥-硫铝酸盐水泥水化及早强剂机理[J]. 武汉理工大学学报, 2020, 42(11): 21-25. BAI J F, ZHANG J J, MA B G, et al. Research on the hydration and early strength characteristics of Portland cement-sulphoaluminate cement[J]. Journal of Wuhan University of Technology, 2020, 42(11): 21-25 (in Chinese). [19] 巴明芳, 梁新奇, 卢梦洁, 等. 复合调凝组分对硫铝酸盐水泥性能的影响及机理[J]. 材料导报, 2015, 29(10): 133-136+142. BA M F, LIANG X Q, LU M J, et al. Effects of composite coagulator on sulphoaluminate cement and the corresponding mechanism[J]. Materials Review, 2015, 29(10): 133-136+142 (in Chinese). [20] 阎培渝, 陈炜一, 杨 剑. 硅酸盐水泥的细度对其水化过程和力学性能的影响[J]. 水泥, 2023(1): 1-5. YAN P Y, CHEN W Y, YANG J. Effect of fineness of Portland cement on hydration process and mechanical properties[J]. Cement, 2023(1): 1-5 (in Chinese). [21] 王培铭, 刘贤萍, 胡曙光, 等. 硅酸盐熟料-煤矸石/粉煤灰混合水泥水化模型研究[J].硅酸盐学报, 2007(增刊1): 180-186. WANG P M, LIU X P, HU S G, et al. Study on the hydration model of silicate clinker coal gangue/fly ash mixed cement[J]. Journal of the Chinese Ceramic Society, 2007 (supplement 1): 180-186 (in Chinese). [22] LI G X, ZHANG J J, SONG Z P, et al. Improvement of workability and early strength of calcium sulphoaluminate cement at various temperature by chemical admixtures[J]. Construction and Building Materials, 2018, 160: 427-439. [23] DENG X F, GUO H Y, TAN H B, et al. Comparison on early hydration of Portland cement and sulphoaluminate cement in the presence of nano ettringite[J]. Construction and Building Materials, 2022, 360: 129516. [24] WANG J T, DENG X F, TAN H B, et al. The mechanical properties and sustainability of phosphogypsum-slag binder activated by nano-ettringite[J]. The Science of the Total Environment, 2023, 903: 166015. [25] 郭兴安, FATTAH ATIQ ABDUL, 牛世伟, 等. 高贝利特硫铝酸盐水泥水化过程的电化学阻抗谱[J]. 科学技术与工程, 2021, 21(11): 4584-4591. GUO X A, FATTAH A A, NIU S W, et al. Electrochemical impedance spectroscopy study on hydration process of high belite sulphoaluminate cement[J]. Science Technology and Engineering, 2021, 21(11): 4584-4591 (in Chinese). |