[1] 肖建庄, 邓 琪, 夏 冰. 混凝土制备低碳化演进与展望[J]. 建筑科学与工程学报, 2022, 39(5): 1-12. XIAO J Z, DENG Q, XIA B. Evolution and prospects of low-carbon concrete preparation[J]. Journal of Architecture and Civil Engineering, 2022, 39(5): 1-12 (in Chinese). [2] AITCIN P, MINDESSM S. Sustainability of concrete (modern concrete technology)[M]. London: Spon Press, 2011. [3] 岑晓倩, 张亚庆. 混凝土CO2排放计算和评价的研究进展[J]. 绿色科技, 2022, 24(20): 136-141. CEN X Q, ZHANG Y Q. Research progress in calculation and evaluation of CO2 emissions from concrete[J]. Journal of Green Science and Technology, 2022, 24(20): 136-141 (in Chinese). [4] FLOWER D J M, SANJAYAN J G. Green house gas emissions due to concrete manufacture[J]. The International Journal of Life Cycle Assessment, 2007, 12(5): 282-288. [5] YERRAMALA A, GANESH BABU K. Transport properties of high volume fly ash roller compacted concrete[J]. Cement and Concrete Composites, 2011, 33(10): 1057-1062. [6] KASTIUKAS G, RUAN S Q, LIANG S, et al. Development of precast geopolymer concrete via oven and microwave radiation curing with an environmental assessment[J]. Journal of Cleaner Production, 2020, 255: 120290. [7] RAO F, LIU Q. Geopolymerization and its potential application in mine tailings consolidation: a review[J]. Mineral Processing and Extractive Metallurgy Review, 2015, 36(6): 399-409. [8] LOPEZ GAYARRE F, GONZALEZ PEREZ J, LOPEZ-COLINA PEREZ C, et al. Life cycle assessment for concrete kerbs manufactured with recycled aggregates[J]. Journal of Cleaner Production, 2016, 113: 41-53. [9] ESTANQUEIRO B, DINIS SILVESTRE J, DE BRITO J, et al. Environmental life cycle assessment of coarse natural and recycled aggregates for concrete[J]. European Journal of Environmental and Civil Engineering, 2018, 22(4): 429-449. [10] 王建刚, 张金喜, 郭阳阳, 等. 不同因素对混凝土抗氯离子渗透性的影响机理[J]. 混凝土, 2018(8): 49-53. WANG J G, ZHANG J X, GUO Y Y, et al. Influence mechanism of different factors on chloride ion penetration of concrete[J]. Concrete, 2018(8): 49-53 (in Chinese). [11] 虞夏深. 水灰比与掺合料对混凝土抗氯离子渗透性能的影响[J]. 大连大学学报, 2017, 38(6): 47-49. YU X S. The effects of water cement ratio and the admixture of concrete resistance to chloride ion penetration[J]. Journal of Dalian University, 2017, 38(6): 47-49 (in Chinese). [12] 孔祥明, 路振宝, 闫 娟, 等. 三乙醇胺对水化过程中水泥浆体液相离子浓度的影响[J]. 硅酸盐学报, 2013, 41(7): 981-986. KONG X M, LU Z B, YAN J, et al. Influence of triethanolamine on elemental concentrations in aqueous phase of hydrating cement pastes[J]. Journal of the Chinese Ceramic Society, 2013, 41(7): 981-986 (in Chinese). [13] 马保国, 许永和, 董荣珍. 三乙醇胺对水泥初始结构和力学性能的影响[J]. 建筑材料学报, 2006, 9(1): 6-9. MA B G, XU Y H, DONG R Z. Influence of triethanolmine on the initial structure formation and mechanical properties of cement[J]. Journal of Building Materials, 2006, 9(1): 6-9 (in Chinese). [14] 徐芝强, 徐 凯, 孙晋峰, 等. 新型链烷醇胺对水泥水化硬化的影响[J]. 硅酸盐学报, 2017, 45(8): 1113-1120. XU Z Q, XU K, SUN J F, et al. Effect of new alkanolamines on cement hydration and hardening[J]. Journal of the Chinese Ceramic Society, 2017, 45(8): 1113-1120 (in Chinese). [15] 史才军, 刘 慧, 李平亮, 等. 三异丙醇胺对石灰石硅酸盐水泥的水化机理及微观结构的影响[J]. 硅酸盐学报, 2011, 39(10): 1673-1681. SHI C J, LIU H, LI P L, et al. Effects of triisopropanolamine on hydration and microstructure of Portland limestone cement[J]. Journal of the Chinese Ceramic Society, 2011, 39(10): 1673-1681 (in Chinese). [16] 王 习, 张云升, 张 宇, 等. CTF增效剂提升混凝土抗冻性能研究[J/OL]. 材料导报: 1-15 (2023-09-26)[2024-07-05]. http://kns.cnki.net/kcms/detail/50.1078.TB.20230922.1347.018.html. WANG X, ZHANG Y S, ZHANG Y, et al. Study on improving frost resistance of concrete with CTF synergist[J/OL]. Materials Reports: 1-15 (2023-09-26) [2024-07-05]. http://kns.cnki.net/kcms/detail/50.1078.TB.20230922.1347.018.html (in Chinese). [17] 赵 杨, 陈 晨, 孙海燕, 等. 增效剂对混凝土性能影响的试验研究[J]. 粉煤灰综合利用, 2021, 35(3): 78-82. ZHAO Y, CHEN C, SUN H Y, et al. Experimental study on the effect of synergist on concrete performance[J]. Fly Ash Comprehensive Utilization, 2021, 35(3): 78-82 (in Chinese). [18] 刘 凯, 穆 松, 蔡景顺, 等. 增效剂对混凝土力学性能和耐久性能的影响研究[J]. 新型建筑材料, 2020, 47(9): 127-130. LIU K, MU S, CAI J S, et al. Effect of concrete synergist on mechanical properties and durability of concrete[J]. New Building Materials, 2020, 47(9): 127-130 (in Chinese). [19] 马 磊. CTF增效剂对混凝土耐久性能的影响研究[J]. 混凝土世界, 2023(2): 19-24. MA L. Study on the effect of CTF synergist on the durability of concrete[J]. China Concrete, 2023(2): 19-24 (in Chinese). [20] 张志杰, 代金鹏, 杨小媛, 等. 低气压养护对水泥净浆性能的影响[J]. 硅酸盐通报, 2023, 42(10): 3439-3444. ZHANG Z J, DAI J P, YANG X Y, et al. Effect of low air pressure curing on performance of cement paste[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(10): 3439-3444 (in Chinese). [21] 雷龙坚, 郝 勇, 袁 满, 等. 基于声发射和DIC的碳纳米管水泥基材料抗压力学性能研究[J]. 硅酸盐通报, 2023, 42(12): 4233-4241. LEI L J, HAO Y, YUAN M, et al. Study on compressive mechanical properties of carbon nanotube cement-based materials based on acoustic emission and DIC[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(12): 4233-4241 (in Chinese). [22] 周玉婉, 陈四利, 杨凯锋, 等. 稻壳灰对水泥基材料力学性能的影响研究[J]. 混凝土, 2023(8): 82-86. ZHOU Y W, CHEN S L, YANG K F, et al. Effect of rice husk ash on mechanical properties of cement-based materials[J]. Concrete, 2023(8): 82-86 (in Chinese). [23] 廖宜顺, 陈佳文, 张天潇. 苎麻纤维增强硫铝酸盐水泥基材料的力学性能与体积变形[J]. 建筑材料学报, 2023, 26(11): 1166-1172. LIAO Y S, CHEN J W, ZHANG T X. Mechanical properties and volumetric deformation of ramie fiber reinforced calcium sulfoaluminate cement-based materials[J]. Journal of Building Materials, 2023, 26(11): 1166-1172 (in Chinese). [24] KONG X M, LU Z B, LIU H, et al. Influence of triethanolamine on the hydration and the strength development of cementitious systems[J]. Magazine of Concrete Research, 2013, 65(18): 1101-1109. [25] 张 浩. 水化温升调节剂对水泥基材料水化行为的影响[D]. 南京: 东南大学, 2020. ZHANG H. Effect of temperature rising inhibitor on hydration behaviour of cementitious materials[D]. Nanjing: Southeast University, 2020 (in Chinese). [26] GARTNER E M, JENNINGS H M. Thermodynamics of calcium silicate hydrates and their solutions[J]. Journal of the American Ceramic Society, 1987, 70(10): 743-749. [27] 李强强. 高铁用醇胺类早强剂对水泥石力学性能及微观结构的影响[D]. 北京: 北京交通大学, 2019. LI Q Q. Influences of alkanolamine accelerators used in high-speed railway on the mechanical properties and microstructure of hardened cement pastes[D]. Beijing: Beijing Jiaotong University, 2019 (in Chinese). [28] 卢子臣. 不同官能团有机外加剂对水泥水化的影响规律及机理分析[D]. 北京: 清华大学, 2017. LU Z C. Effect of chemical admixtures with different functional groups on cement hydration and the mechanisms[D]. Beijing: Tsinghua University, 2017 (in Chinese). [29] 钱觉时. 建筑材料学[M]. 武汉: 武汉理工大学出版社, 2007. QIAN J S. Building materials science[M]. Wuhan: Wuhan University of Technology Press, 2007 (in Chinese). [30] 张金山. 钙矾石形貌调控及其机理研究[D]. 北京: 中国建筑材料科学研究总院, 2017. ZHANG J S. Study on the regulation of ettringite morphology and its mechanism[D]. Beijing: China Building Materials Academy, 2017 (in Chinese). [31] 朱建平, 朱丽飞, 冯春花, 等. 片状纳米勃姆石对水泥力学及微观性能的影响[J]. 硅酸盐通报, 2021, 40(11): 3556-3564. ZHU J P, ZHU L F, FENG C H, et al. Effect of flaky nano boehmite on mechanical and microscopic properties of cement[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(11): 3556-3564 (in Chinese). |