[1] 邓德华, 刘赞群, DE SCHUTTER G, 等. 关于“混凝土硫酸盐结晶破坏”理论的研究进展[J]. 硅酸盐学报, 2012, 40(2): 175-185. DENG D H, LIU Z Q, DE SCHUTTER G, et al. Research progress on theory of “sulfate salt weathering on concrete”[J]. Journal of the Chinese Ceramic Society, 2012, 40(2): 175-185 (in Chinese). [2] 韩宇栋, 张 君, 高 原. 混凝土抗硫酸盐侵蚀研究评述[J]. 混凝土, 2011(1): 52-56+61. HAN Y D, ZHANG J, GAO Y. Review of sulfate attack on concrete[J]. Concrete, 2011(1): 52-56+61 (in Chinese). [3] GUO Z H, HOU P K, XU Z H, et al. Sulfate attack resistance of tricalcium silicate modified with nano-silica and supplementary cementitious materials[J]. Construction and Building Materials, 2022, 321: 126332. [4] BEN HAHA M, WINNEFELD F, PISCH A. Advances in understanding ye'elimite-rich cements[J]. Cement and Concrete Research, 2019, 123: 105778. [5] CUI K, CHANG J, SABRI M M S, et al. Toughness, reinforcing mechanism, and durability of hybrid steel fiber reinforced sulfoaluminate cement composites[J]. Buildings, 2022, 12(8): 1243. [6] ZHANG H R, JI T, LIU H, et al. Improving the sulfate resistance of recycled aggregate concrete (RAC) by using surface-treated aggregate with sulfoaluminate cement (SAC)[J]. Construction and Building Materials, 2021, 297: 123535. [7] 张五怡, 聂 松, 徐名凤, 等. 高贝利特硫铝酸盐水泥活化研究进展[J]. 硅酸盐通报, 2022, 41(9): 2979-2992. ZHANG W Y, NIE S, XU M F, et al. Research progress on activation of high belite calcium sulphoaluminate cement[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(9): 2979-2992 (in Chinese). [8] 苏敦磊, 王新波, 李秋义, 等. 固废制备高贝利特硫铝酸盐水泥的研究进展[J]. 混凝土, 2020(3): 81-84. SU D L, WANG X B, LI Q Y, et al. Research progress on preparation of high belite sulphoaluminate cement with solid waste[J]. Concrete, 2020(3): 81-84 (in Chinese). [9] NIE S, ZHOU J, YANG F, et al. Analysis of theoretical carbon dioxide emissions from cement production: methodology and application[J]. Journal of Cleaner Production, 2022, 334: 130270. [10] WANG J F, WANG Y, LIU H, et al. Effect of disodium EDTA on hydration and mechanical properties of calcium sulphoaluminate-belite cement[J]. Cement and Concrete Research, 2023, 164: 107041. [11] 齐秋霖. 硫铝酸盐水泥C4A3/C比率对其抗酸和抗硫酸盐侵蚀性能影响[D]. 天津: 河北工业大学, 2021. QI Q L. Sulphoaluminate cement C4A3/C ratio on its acid resistance and sulfate resistance[D]. Tianjin: Hebei University of Technology, 2021 (in Chinese). [12] 安 赛, 王宝民, 陈文秀, 等. 电石渣激发矿渣-粉煤灰复合胶凝材料的作用机制[J]. 硅酸盐通报, 2023, 42(4): 1333-1343. AN S, WANG B M, CHEN W X, et al. Interaction mechanism of carbide slag activating slag-fly ash composite cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1333-1343 (in Chinese). [13] 孙道胜, 叶 哲, 刘开伟, 等. 碱矿渣胶凝材料的固砂特性及抗硫酸盐侵蚀性能[J]. 材料导报, 2020, 34(10): 10061-10067. SUN D S, YE Z, LIU K W, et al. Consolidation characteristics and sulfate resistance of alkali-activated slag cementitious materials[J]. Materials Reports, 2020, 34(10): 10061-10067 (in Chinese). [14] 廖宜顺, 刘楚明, 康 爽, 等. 海水环境下矿物掺合料对硫铝酸盐水泥的水化影响[J]. 硅酸盐通报, 2017, 36(4): 1333-1338. LIAO Y S, LIU C M, KANG S, et al. Effect of mineral admixtures on the hydration of sulphoaluminate cement under seawater condition[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(4): 1333-1338 (in Chinese). [15] DENER M, KARATAS M, MOHABBI M. Sulfate resistance of alkali-activated slag/Portland cement mortar produced with lightweight pumice aggregate[J]. Construction and Building Materials, 2021, 304: 124671. [16] SCRIVENER K, SNELLINGS R, LOTHENBACH B. A practical guide to microstructural analysis of cementitious materials[M]. Boca Raton: CRC Press, 2021. [17] PELLETIER L, WINNEFELD F, LOTHENBACH B. The ternary system Portland cement-calcium sulphoaluminate clinker-anhydrite: hydration mechanism and mortar properties[J]. Cement and Concrete Composites, 2010, 32(7): 497-507. [18] 范昭昂, 李秋义, 郭远新, 等. 矿粉与粉煤灰对高贝利特硫铝酸盐水泥水化和强度的影响[J]. 混凝土, 2023(2): 105-108+113. FAN Z A, LI Q Y, GUO Y X, et al. Effect of mineral power and fly ash on hydration and strength of high-belite sulfoaluminate cement[J]. Concrete, 2023(2): 105-108+113 (in Chinese). [19] CHANG J, ZHANG Y Y, SHANG X P, et al. Effects of amorphous AH3 phase on mechanical properties and hydration process of C4A3-CH2-CH-H2O system[J]. Construction and Building Materials, 2017, 133: 314-322. [20] OGAWA S, NOZAKI T, YAMADA K, et al. Improvement on sulfate resistance of blended cement with high alumina slag[J]. Cement and Concrete Research, 2012, 42(2): 244-251. [21] 阎培渝, 彭 江, 覃 肖. 大体积补偿收缩混凝土中延迟钙矾石生成产生危害的条件[J]. 硅酸盐学报, 2001, 29(2): 109-113. YAN P Y, PENG J, QIN X. Preconditions of the harmful effect induced by delayed ettringite formation in massive shrinkage-compensating concrete[J]. Journal of the Chinese Ceramic Society, 2001, 29(2): 109-113 (in Chinese). [22] 李 娟. 高贝利特硫铝酸盐水泥的研究[D]. 武汉: 武汉理工大学, 2013. LI J. Study on high belite-sulphoaluminate cement[D]. Wuhan: Wuhan University of Technology, 2013 (in Chinese). |