[1] LIU B J, QIN J L, SHI J Y, et al. New perspectives on utilization of CO2 sequestration technologies in cement-based materials[J]. Construction and Building Materials, 2021, 272: 121660. [2] ZHAN B J, XUAN D X, POON C S, et al. Effect of curing parameters on CO2 curing of concrete blocks containing recycled aggregates[J]. Cement and Concrete Composites, 2016, 71: 122-130. [3] 林忠财, 朱芳萍, 王 敏. 高温碳化养护对干硬性水泥净浆强度及微观性能的影响[J]. 硅酸盐通报, 2021, 40(10): 3337-3344. LING T C, ZHU F P, WANG M. Effect of high temperature carbonation curing on strength and microstructure of dry-mixed cement pastes[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(10): 3337-3344 (in Chinese). [4] SHI C J, LIU M, HE P P, et al. Factors affecting kinetics of CO2 curing of concrete[J]. Journal of Sustainable Cement-Based Materials, 2012, 1(1/2): 24-33. [5] PAPADAKIS V G, VAYENAS C G, FARDIS M N. A reaction engineering approach to the problem of concrete carbonation[J]. AIChE Journal, 1989, 35(10): 1639-1650. [6] FANG Y F, LIU Z C, WANG Q H, et al. Strength development and products evolution of β-C2S and γ-C3S induced by accelerated carbonation curing[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2020, 35(6): 1053-1060. [7] BERTOLINI L, ELSENER B, PEDEFERRI P, et al. Corrosion of steel in concrete: prevention, diagnosis, repair[M]. New Jersey: Wiley, 2013. [8] MEHDIZADEH H, JIA X X, MO K H, et al. Effect of water-to-cement ratio induced hydration on the accelerated carbonation of cement pastes[J]. Environmental Pollution, 2021, 280: 116914. [9] BOUMAAZA M, TURCRY P, HUET B, et al. Influence of carbonation on the microstructure and the gas diffusivity of hardened cement pastes[J]. Construction and Building Materials, 2020, 253: 119227. [10] WANG J B, XU H X, XU D Y, et al. Accelerated carbonation of hardened cement pastes: influence of porosity[J]. Construction and Building Materials, 2019, 225: 159-169. [11] LIU H, SUN Z P, YANG J B, et al. A novel method for semi-quantitative analysis of hydration degree of cement by 1H low-field NMR[J]. Cement and Concrete Research, 2021, 141: 106329. [12] MOUNANGA P, KHELIDJ A, LOUKILI A, et al. Predicting Ca(OH)2 content and chemical shrinkage of hydrating cement pastes using analytical approach[J]. Cement and Concrete Research, 2004, 34(2): 255-265. [13] 林宗寿. 无机非金属材料工学[M]. 武汉: 武汉理工大学出版社, 2019: 303-304. LIN Z S. Inorganic nonmetallic materials technology[M]. Wuhan: Wuhan University of Technology Press, 2019: 303-304 (in Chinese). [14] 林宗寿. 胶凝材料学[M]. 武汉: 武汉理工大学出版社, 2014: 61. LIN Z S. Cementitious material science[M]. Wuhan: Wuhan University of Technology Press, 2014: 61 (in Chinese). [15] NAVI P, PIGNAT C. Simulation of cement hydration and the connectivity of the capillary pore space[J]. Advanced Cement Based Materials, 1996, 4(2): 58-67. [16] PHUNG Q T, MAES N, JACQUES D, et al. Effect of limestone fillers on microstructure and permeability due to carbonation of cement pastes under controlled CO2 pressure conditions[J]. Construction and Building Materials, 2015, 82: 376-390. [17] SEVELSTED T F, SKIBSTED J. Carbonation of C-S-H and C-A-S-H samples studied by 13C, 27Al and 29Si MAS NMR spectroscopy[J]. Cement and Concrete Research, 2015, 71: 56-65. [18] SIDDIQUE S, NAQI A L, JANG J G. Influence of water to cement ratio on CO2 uptake capacity of belite-rich cement upon exposure to carbonation curing[J]. Cement and Concrete Composites, 2020, 111: 103616. [19] LU B, SHI C J, CAO Z J, et al. Effect of carbonated coarse recycled concrete aggregate on the properties and microstructure of recycled concrete[J]. Journal of Cleaner Production, 2019, 233: 421-428. [20] CHANG C F, CHEN J W. The experimental investigation of concrete carbonation depth[J]. Cement and Concrete Research, 2006, 36(9): 1760-1767. [21] AGUIRRE-GUERRERO A M, MEJÍA DE GUTIÉRREZ R. Efficiency of electrochemical realkalisation treatment on reinforced blended concrete using FTIR and TGA[J]. Construction and Building Materials, 2018, 193: 518-528. [22] LAWRENCE R M H, MAYS T J, WALKER P, et al. Determination of carbonation profiles in non-hydraulic lime mortars using thermogravimetric analysis[J]. Thermochimica Acta, 2006, 444(2): 179-189. [23] CHANG J, FANG Y F. Quantitative analysis of accelerated carbonation products of the synthetic calcium silicate hydrate (C-S-H) by QXRD and TG/MS[J]. Journal of Thermal Analysis and Calorimetry, 2015, 119(1): 57-62. [24] SILVA D A, ROMAN H R, GLEIZE P J P. Evidences of chemical interaction between EVA and hydrating Portland cement[J]. Cement and Concrete Research, 2002, 32(9): 1383-1390. [25] YU P, KIRKPATRICK R J, POE B, et al. Structure of calcium silicate hydrate (C-S-H): near-, mid-, and far-infrared spectroscopy[J]. Journal of the American Ceramic Society, 2004, 82(3): 742-748. [26] GARCÍA LODEIRO I, MACPHEE D E, PALOMO A, et al. Effect of alkalis on fresh C-S-H gels. FTIR analysis[J]. Cement and Concrete Research, 2009, 39(3): 147-153. [27] HUGHES T L, METHVEN C M, JONES T G J, et al. Determining cement composition by Fourier transform infrared spectroscopy[J]. Advanced Cement Based Materials, 1995, 2(3): 91-104. [28] SHEN P L, JIANG Y, ZHANG Y Y, et al. Production of aragonite whiskers by carbonation of fine recycled concrete wastes: an alternative pathway for efficient CO2 sequestration[J]. Renewable and Sustainable Energy Reviews, 2023, 173: 113079. [29] 何永佳, 胡曙光. 29Si固体核磁共振技术在水泥化学研究中的应用[J]. 材料科学与工程学报, 2007, 25(1): 147-153. HE Y J, HU S G. Application of 29Si nuclear magnetic resonance (NMR) in research of cement chemistry[J]. Journal of Materials Science and Engineering, 2007, 25(1): 147-153 (in Chinese). |