硅酸盐通报 ›› 2023, Vol. 42 ›› Issue (8): 2667-2682.
• 水泥混凝土 • 下一篇
梁文杰1, 谭洪波2, 吕周岭2
收稿日期:
2023-04-20
修订日期:
2023-05-21
发布日期:
2023-08-18
通信作者:
谭洪波,博士,研究员。E-mail:thbwhut@whut.edu.cn
作者简介:
梁文杰(2002—),男。主要从事无机非金属材料方向的研究。E-mail:623726296@qq.com
基金资助:
LIANG Wenjie1, TAN Hongbo2, LYU Zhouling2
Received:
2023-04-20
Revised:
2023-05-21
Published:
2023-08-18
摘要: 海洋工程建设中,海砂、珊瑚砂等原料中富含一定的氯盐,在配制过程中,原料中的氯离子进入钢筋混凝土引起内部侵蚀,导致钢筋混凝土结构失效。大量试验表明,水泥水化产物C-S-H凝胶和Friedel's盐在提高水泥基材料内源氯离子固化能力、降低钢筋锈蚀风险等方面发挥着重要作用。水泥矿物、掺合料、外加剂、类AFm相材料的存在影响着C-S-H凝胶和Friedel's盐的生成,进而改变水泥基材料的氯离子固化能力。本文综述了上述影响下C-S-H凝胶和Friedel's盐的变化,进而分析了水泥混凝土中内源氯离子的固化效果,为采用氯离子固化材料解决钢筋混凝土氯离子侵蚀问题提供参考。
中图分类号:
梁文杰, 谭洪波, 吕周岭. 混凝土内源氯离子固化的研究进展[J]. 硅酸盐通报, 2023, 42(8): 2667-2682.
LIANG Wenjie, TAN Hongbo, LYU Zhouling. Research Progress on Endogenous Chloride Ion Binding of Concrete[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2667-2682.
[1] 杜荣归, 刘 玉, 林昌健. 氯离子对钢筋腐蚀机理的影响及其研究进展[J]. 材料保护, 2006, 39(6): 45-50+83. DU R G, LIU Y, LIN C J. Effect of chlorine ions on the corrosion behavior of reinforcing steel in concrete[J]. Materials Protection, 2006, 39(6): 45-50+83 (in Chinese). [2] 王羊洋, 祝 雯, 黄石明. 氯离子对混凝土中钢筋锈蚀行为的影响[J]. 广州建筑, 2019, 47(2): 24-28. WANG Y Y, ZHU W, HUANG S M. Effect of chloride ion on corrosion behavior of rebar in concrete[J]. Guangzhou Architecture, 2019, 47(2): 24-28 (in Chinese). [3] 王绍东, 黄煜镔, 王 智. 水泥组分对混凝土固化氯离子能力的影响[J]. 硅酸盐学报, 2000, 28(6): 570-574. WANG S D, HUANG Y B, WANG Z. Concrete resistance to chloride ingress: effect of cement composition[J]. Journal of the Chinese Ceramic Society, 2000, 28(6): 570-574 (in Chinese). [4] FLOREA M V A, BROUWERS H J H. Chloride binding related to hydration products[J]. Cement and Concrete Research, 2012, 42(2): 282-290. [5] HIRAO H, YAMADA K, TAKAHASHI H, et al. Chloride binding of cement estimated by binding isotherms of hydrates[J]. Journal of Advanced Concrete Technology, 2005, 3(1): 77-84. [6] FALZONE G, BALONIS M, SANT G. X-AFm stabilization as a mechanism of bypassing conversion phenomena in calcium aluminate cements[J]. Cement and Concrete Research, 2015, 72: 54-68. [7] 金祖权, 孙 伟, 赵铁军, 等. 在不同溶液中混凝土对氯离子的固化程度[J]. 硅酸盐学报, 2009, 37(7): 1068-1072+1078. JIN Z Q, SUN W, ZHAO T J, et al. Chloride binding in concrete exposed to corrosive solutions[J]. Journal of the Chinese Ceramic Society, 2009, 37(7): 1068-1072+1078 (in Chinese). [8] 郭丽萍, 张 健, 曹园章, 等. 超高性能水泥基材料复合盐侵蚀研究: 合成Friedel盐和钙矾石在硫酸盐和氯盐溶液中的稳定性[J]. 材料导报, 2017, 31(23): 132-137. GUO L P, ZHANG J, CAO Y Z, et al. A study for compound salts attack on ultra-high performance cement-based materials: the stabilities of chemically synthesized Friedel salt and ettringite in solutions of sulfates and chloride salts[J]. Materials Review, 2017, 31(23): 132-137 (in Chinese). [9] 姜文斌. 水泥矿物及其水化产物对氯离子的固化机理[D]. 武汉: 武汉理工大学, 2018. JIANG W B. Binding mechanism of chloride ion by cement minerals and their hydration products[D]. Wuhan: Wuhan University of Technology, 2018 (in Chinese). [10] WU J, WEI J X, HUANG H L, et al. Effect of multiple ions on the degradation in concrete subjected to sulfate attack[J]. Construction and Building Materials, 2020, 259: 119846. [11] LIU X H, TAN H B, MA B G, et al. Effect of the prepared barium@hydrogel capsule on chloride ion binding of Portland cement paste[J]. Composites Part B, 2022, 247: 110314. [12] POLLMANN H, KUZEL H J. Synthesis and polymorphic transformations of solid-solutions in the system 3CaO·Al2O3·CaCl2·nH2O-3CaO·Al2O3·Ca(OH)2·nH2O-H2O[J]. Neues Jahrbuch Fur Mineralogie-monatshefte, 1988(5): 193-202. [13] HOBBS M. Solubilities and ion exchange properties of solid solutions between the hydroxyl, chlorine and carbon trioxide end members of the monocalcium aluminate hydrates[J]. Proquest Dissertations and Theses Global, 2001. [14] 郭明磊, 肖 佳, 左胜浩. 铝酸三钙水化浆体固化氯离子能力研究[J]. 建筑材料学报, 2019, 22(3): 341-347. GUO M L, XIAO J, ZUO S H. Chloride binding capacity of hydrated C3A pastes[J]. Journal of Building Materials, 2019, 22(3): 341-347 (in Chinese). [15] FUKUHARA M, GOTO S, ASAGA K, et al. Mechanisms and kinetics of C4AF hydration with gypsum[J]. Cement and Concrete Research, 1981, 11(3): 407-414. [16] 李 博, 陈 伟. C-S-H凝胶分子结构研究进展[J]. 硅酸盐学报, 2019, 47(8): 1095-1100. LI B, CHEN W. Development on molecular structure of calcium silicate hydrate gel[J]. Journal of the Chinese Ceramic Society, 2019, 47(8): 1095-1100 (in Chinese). [17] 杨长辉, 晏 宇, 欧忠文. 偏高岭土水泥净浆结合氯离子性能的研究[J]. 混凝土, 2010(10): 1-3+7. YANG C H, YAN Y, OU Z W. Capability of cement paste binding chloride ions with metakaolin as admixture[J]. Concrete, 2010(10): 1-3+7 (in Chinese). [18] 郭丽萍, 费香鹏, 曹园章, 等. 氯离子与硫酸根离子在水化硅酸钙表面竞争吸附的分子动力学研究[J]. 材料导报, 2021, 35(8): 8034-8041. GUO L P, FEI X P, CAO Y Z, et al. Molecular kinetics of competitive adsorption of chloride and sulphate ions on C-S-H surface[J]. Materials Reports, 2021, 35(8): 8034-8041 (in Chinese). [19] WANG Z Z, WANG B M, YANG D L, et al. Research progress on the chloride binding capability of cement-based composites[J]. Journal of the Ceramic Society of Japan, 2020, 128(5): 238-253. [20] ZIBARA H, HOOTON R D, THOMAS M D A, et al. Influence of the C/S and C/A ratios of hydration products on the chloride ion binding capacity of lime-SF and lime-MK mixtures[J]. Cement and Concrete Research, 2008, 38(3): 422-426. [21] BEAUDOIN J J, RAMACHANDRAN V S, FELDMAN R F. Interaction of chloride and C-S-H[J]. Cement and Concrete Research, 1990, 20(6): 875-883. [22] NAGATAK I, SHIGEYOSH I, OTSUK I, et al. Condensation of chloride ion in hardened cement matrix materials and on embedded steel bars[J]. ACI Materials Journal, 1993, 90(4): 323-332. [23] ELAKNESWARAN Y, NAWA T, KURUMISAWA K. Electrokinetic potential of hydrated cement in relation to adsorption of chlorides[J]. Cement and Concrete Research, 2009, 39(4): 340-344. [24] LARSEN C K. Chloride binding in concrete-effect of surrounding environment and concrete composition[D]. Norway: The Norwegian University of Science and Technology, 1998. [25] JAIN J A, NEITHALATH N. Chloride transport in fly ash and glass powder modified concretes-Influence of test methods on microstructure[J]. Cement and Concrete Composites, 2010, 32(2): 148-156. [26] 张平均, 董荣珍, 张 莉, 等. 粉煤灰在耐氯离子侵蚀混凝土中作用机理的研究[J]. 粉煤灰, 2004, 16(3): 14-15+31. ZHANG P J, DONG R Z, ZHANG L, et al. Research on mechanism of fly ash in chlorine ion corros ion-resistance concrete[J]. Coal Ash China, 2004, 16(3): 14-15+31 (in Chinese). [27] 张腾腾, 王传林, 张宇轩, 等. 粉煤灰掺量对海水海砂高性能混凝土性能的影响[J]. 硅酸盐通报, 2022, 41(5): 1677-1688. ZHANG T T, WANG C L, ZHANG Y X, et al. Effect of fly ash content on performance of high performance concrete with seawater and sea sand[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(5): 1677-1688 (in Chinese). [28] 韦建刚, 陈 荣, 黄 伟, 等. 静水压力下超高性能混凝土的抗氯离子渗透性能[J]. 硅酸盐通报, 2022, 41(8): 2706-2715+2747. WEI J G, CHEN R, HUANG W, et al. Chloride penetration resistance of ultra-high performance concrete under hydrostatic pressure[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(8): 2706-2715+2747 (in Chinese). [29] 勾密峰, 黄 飞, 管学茂. 矿渣对氯离子的固化作用[J]. 材料导报, 2014, 28(10): 120-122+144. GOU M F, HUANG F, GUAN X M. The binding effect of slag on the chloride ions[J]. Materials Review, 2014, 28(10): 120-122+144 (in Chinese). [30] 匡 琪, 余红发, 张小平, 等. 矿渣混凝土的氯离子结合能力研究[J]. 硅酸盐通报, 2014, 33(12): 3085-3089+3096. KUANG Q, YU H F, ZHANG X P, et al. Research on chloride ion binding capacity of slag concrete[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(12): 3085-3089+3096 (in Chinese). [31] YE H L, HUANG L, CHEN Z J. Influence of activator composition on the chloride binding capacity of alkali-activated slag[J]. Cement and Concrete Composites, 2019, 104: 103368. [32] 王军平. 偏高岭土对水泥基复合材料抗氯离子侵蚀性能的影响[J]. 混凝土与水泥制品, 2023(2): 10-14. WANG J P. Effect of metakaolin on chloride ion erosion resistance of cementbased composites[J]. China Concrete and Cement Products, 2023(2): 10-14 (in Chinese). [33] 袁银峰, 麻海燕, 余红发, 等. 硅灰掺量对混凝土氯离子结合能力的影响[J]. 硅酸盐通报, 2014, 33(9): 2320-2325. YUAN Y F, MA H Y, YU H F, et al. Influences of silicon fume content on chloride ion binding capacity of concrete[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(9): 2320-2325 (in Chinese). [34] 严建华, 宋娅琪, 郝挺宇, 等. 氢氧化铁-硅灰改性水泥浆体系结合氯离子性能的研究[C]//中国冶金建设协会混凝土专业委员会, 中冶高性能混凝土工程技术中心. 第六届“全国先进混凝土技术及工程应用”研讨会论文集. 第六届“全国先进混凝土技术及工程应用”研讨会论文集, 2018: 51-58. YAN J H, SONG Y Q, HAO T Y, et al. Study on the combined chloride ion properties of iron hydroxide-silica ash modified cement slurry system[C]//Concrete Professional Committee of China Metallurgical Construction Association, MCC High Performance Concrete Engineering Technology Center. Proceedings of the 6th National Advanced Concrete Technology and Engineering Application Symposium. Proceedings of the 6th National Advanced Concrete Technology and Engineering Application Symposium, 2018: 51-58 (in Chinese). [35] 石新波. 矿物掺合料对高性能混凝土抗氯离子渗透性能的影响[J]. 低温建筑技术, 2019, 41(8): 18-20. SHI X B. Effect of mineral admixture on chloride ion penetration resistance of high-performance concrete[J]. Low Temperature Architecture Technology, 2019, 41(8): 18-20 (in Chinese). [36] 莫利伟, 耿 健, 柳俊哲, 等. 粉煤灰和矿粉双掺对水泥基材料固化氯离子能力的研究[J]. 硅酸盐通报, 2013, 32(12): 2443-2448. MO L W, GENG J, LIU J Z, et al. Study on fly ash and slag on binding of chloride ion into cement based materials[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(12): 2443-2448 (in Chinese). [37] 张 涛, 耿 健, 柳根金, 等. 水泥-粉煤灰-矿粉-偏高岭土四元胶凝材料氯离子固化机理研究[J]. 硅酸盐通报, 2022, 41(6): 2063-2070. ZHANG T, GENG J, LIU G J, et al. Chloride binding mechanism in cement-fly ash-slag-metakaolin quaternary cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(6): 2063-2070 (in Chinese). [38] 张 涛, 耿 健. 多元水泥基材料氯离子固化性能研究[J]. 低温建筑技术, 2022, 44(9): 1-5. ZHANG T, GENG J. Binding performance of chloride in multi-component cement-based materials[J]. Low Temperature Architecture Technology, 2022, 44(9): 1-5 (in Chinese). [39] 彭 晖, 李一聪, 罗 冬, 等. 碱激发偏高岭土/矿渣复合胶凝体系反应水平及影响因素分析[J]. 建筑材料学报, 2020, 23(6): 1390-1397. PENG H, LI Y C, LUO D, et al. Analysis of reaction level and factors of alkali activated metakaolin/GGBFS[J]. Journal of Building Materials, 2020, 23(6): 1390-1397 (in Chinese). [40] 郭晓潞, 施惠生, 夏 明. 不同钙源对地聚合物反应机制的影响研究[J]. 材料研究学报, 2016, 30(5): 348-354. GUO X L, SHI H S, XIA M. Effect of different calcium resouces on reaction mechanism of geopolymer[J]. Chinese Journal of Materials Research, 2016, 30(5): 348-354 (in Chinese). [41] 谷上海, 黄敦文, 杨翼玮, 等. 碱激发偏高岭土-矿渣对氯离子的固化能力及其影响因素[J]. 西安建筑科技大学学报(自然科学版), 2022, 54(2): 191-201. GU S H, HUANG D W, YANG Y W, et al. Chloride binding ability of alkali activated metakaolin/slag blends and its influencing factors[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2022, 54(2): 191-201 (in Chinese). [42] BABAAHMADI A, MACHNER A, KUNTHER W, et al. Chloride binding in Portland composite cements containing metakaolin and silica fume[J]. Cement and Concrete Research, 2022, 161: 106924. [43] HEMSTAD P, MACHNER A, DE WEERDT K. The effect of artificial leaching with HCl on chloride binding in ordinary Portland cement paste[J]. Cement and Concrete Research, 2020, 130: 105976. [44] 严建华, 崔延帅, 郝挺宇, 等. 三乙醇胺对复合水泥浆氯离子结合能力的影响[C]//中国冶金建设协会混凝土专业委员会, 中冶高性能混凝土工程技术中心. 第六届“全国先进混凝土技术及工程应用”研讨会论文集. 第六届“全国先进混凝土技术及工程应用”研讨会论文集, 2018: 21-28. YAN J H, CUI Y S, HAO T Y, et al. Effect of triethanolamine on chloride ion binding capacity of composite cement slurry[C]//Concrete Professional Committee of China Metallurgical Construction Association, MCC High Performance Concrete Engineering Technology Center. Proceedings of the 6th National Advanced Concrete Technology and Engineering Application Symposium. Proceedings of the 6th National Advanced Concrete Technology and Engineering Application, 2018: 21-28 (in Chinese). [45] HAN J G, WANG K J, SHI J Y, et al. Mechanism of triethanolamine on Portland cement hydration process and microstructure characteristics[J]. Construction and Building Materials, 2015, 93: 457-462. [46] 孔祥明, 路振宝, 闫 娟, 等. 三乙醇胺对水化过程中水泥浆体液相离子浓度的影响[J]. 硅酸盐学报, 2013, 41(7): 981-986. KONG X M, LU Z B, YAN J, et al. Influence of triethanolamine on elemental concentrations in aqueous phase of hydrating cement pastes[J]. Journal of the Chinese Ceramic Society, 2013, 41(7): 981-986 (in Chinese). [47] ZHANG T, SHANG S, YIN F, et al. Adsorptive behavior of surfactants on surface of Portland cement[J]. Cement and Concrete Research, 2001, 31(7): 1009-1015. [48] TANG L P, NILSSON L O. Chloride binding capacity and binding isotherms of OPC pastes and mortars[J]. Cement and Concrete Research, 1993, 23(2): 247-253. [49] 徐金霞, 冯 伟, 蒋林华, 等. 表面活性剂对水泥浆体结合氯离子性能的影响[J]. 湖南大学学报(自然科学版), 2017, 44(12): 74-81. XU J X, FENG W, JIANG L H, et al. Effect of surfactants on property of binding chloride in cement paste[J]. Journal of Hunan University (Natural Sciences), 2017, 44(12): 74-81 (in Chinese). [50] 吕周岭, 罗 英, 马保国, 等. 纳米二氧化硅对水泥-粉煤灰体系氯离子固化能力的影响[J]. 硅酸盐通报, 2019, 38(7): 1997-2003. LYU Z L, LUO Y, MA B G, et al. Effect of nano-silica on the chloride immobilization capacity of cement-fly ash system[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(7): 1997-2003 (in Chinese). [51] 路 阳, 卢军太, 何小芳, 等. 纳米二氧化硅的制备及其对水泥水化影响的研究进展[J]. 硅酸盐通报, 2013, 32(7): 1335-1339. LU Y, LU J T, HE X F, et al. Research progress on preparation and effect on cement hydration of nano silica[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(7): 1335-1339 (in Chinese). [52] 范基骏, 孙中华, 陈日高, 等. NS影响硅酸盐水泥性能的机理研究[J]. 广西大学学报(自然科学版), 2009, 34(2): 158-163. FAN J J, SUN Z H, CHEN R G, et al. Study on mechanism of Portland cement performances as NS affected[J]. Journal of Guangxi University (Natural Science Edition), 2009, 34(2): 158-163 (in Chinese). [53] 魏荟荟. 纳米CaCO3对水泥基材料的影响及作用机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. WEI H H. Study on effect and mechanism of nano-CaCO3 in cement-based materials[D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese). [54] 陈新杰, 丁天云, 张海生, 等. 纳米碳酸钙对水泥石氯离子结合量的影响[J]. 硅酸盐通报, 2022, 41(6): 1869-1878+1887. CHEN X J, DING T Y, ZHANG H S, et al. Effect of nano-calcium carbonate on chloride ion binding amount of cement stone[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(6): 1869-1878+1887 (in Chinese). [55] 朱玉荃, 赵晓婕, 钟 嫄, 等. 类水滑石材料主客体插层结构的构筑及特性的理论研究[J]. 高等学校化学学报, 2020, 41(11): 2287-2305. ZHU Y Q, ZHAO X J, ZHONG Y, et al. Theoretical study on the construction and characteristics of the host-guest intercalated structure of layered double hydroxides[J]. Chemical Journal of Chinese Universities, 2020, 41(11): 2287-2305 (in Chinese). [56] 唐 宁, 岑文飞, 赵明宇, 等. 钙铝水滑石在水泥基材料中的氯离子固化行为研究[J]. 沈阳建筑大学学报(自然科学版), 2021, 37(5): 900-906. TANG N, CEN W F, ZHAO M Y, et al. Chloride ions binding of calcium-aluminum hydrotalcite in cementitious material[J]. Journal of Shenyang Jianzhu University (Natural Science), 2021, 37(5): 900-906 (in Chinese). [57] 陈宇轩. LDHs材料固化氯离子机理及其在水泥基材料中的应用[D]. 武汉: 武汉理工大学, 2015. CHEN Y X. Mechanism of chloride binding of LDHs and its application in cement-based material[D]. Wuhan: Wuhan University of Technology, 2015 (in Chinese). [58] 廖牧情. 多元水滑石在水泥净浆中对氯离子的固化性能[D]. 衡阳: 南华大学, 2022. LIAO M Q. Curing properties of multi-element hydrotalcite to chloride ions in cement paste[D]. Hengyang: University of South China, 2022 (in Chinese). [59] 胡 静, 吕 亮. 镁铝水滑石去除氯离子性能研究[J]. 工业水处理, 2008, 28(6): 59-61. HU J, LÜ L. Researches on the removal capacity of chloride ions from aqueous solution by calcined Mg-Al-CO3 LDH[J]. Industrial Water Treatment, 2008, 28(6): 59-61 (in Chinese). [60] YOON S, MOON J, BAE S, et al. Chloride adsorption by calcined layered double hydroxides in hardened Portland cement paste[J]. Materials Chemistry and Physics, 2014, 145(3): 376-386. [61] 马军涛. LDHs-MK复合改性混凝土及其机理研究[J]. 岩土力学, 2015, 36(2): 360. MA J T. Study on LDHs-MK composite modified concrete and its mechanism[J]. Rock and Soil Mechanics, 2015, 36(2): 360 (in Chinese). [62] 牛 乐. 焙烧水滑石(CLDH)对氯离子存在下钢筋腐蚀行为的影响[D]. 北京: 北京化工大学, 2010. NIU L. Effect of calcined hydrotalcite (CLDH) on the corrosion of rebar by chloride[D]. Beijing: Beijing University of Chemical Technology, 2010 (in Chinese). [63] 冯 跃, 耿 健, 李 东. 焙烧水滑石对砂浆中氯离子渗透的影响[J]. 硅酸盐通报, 2018, 37(4): 1195-1199. FENG Y, GENG J, LI D. Influence of calcined hydrotalcite on chloride penetration in mortar[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(4): 1195-1199 (in Chinese). |
[1] | 彭勇军, 刘娟红, 李华, 李康. 基于RSM-BBD的高原地区桥墩混凝土性能试验研究[J]. 硅酸盐通报, 2023, 42(7): 2401-2408. |
[2] | 刘沛, 姚素玲, 董宪姝, 付元鹏, 李德浩. 矿物掺合料透水混凝土微观结构及性能分析[J]. 硅酸盐通报, 2023, 42(7): 2504-2512. |
[3] | 周丽娜, 蔡颖, 马财龙, 罗玲. 水滑石复合水泥基材料氯离子吸附能力的研究进展[J]. 硅酸盐通报, 2023, 42(4): 1137-1147. |
[4] | 范小春, 汪阳, 高旭, 张宇, 袁波. 亚硝酸钙与富铝矿相协同调控碱矿渣氯离子固化能力研究[J]. 硅酸盐通报, 2023, 42(4): 1148-1155. |
[5] | 李广, 李北星, 黄安, 邓俊双. 养护温度和矿物掺合料对蒸养混凝土脆性的影响[J]. 硅酸盐通报, 2023, 42(2): 487-495. |
[6] | 徐宁, 杨恒, 熊传胜, 张栋, 蒋鹏, 刘璨, 刘欣昕, 程星燎. 钢筋混凝土中防腐添加剂的研究进展[J]. 硅酸盐通报, 2023, 42(1): 1-21. |
[7] | 陈波, 王伟鱼, 丰雨秋, 饶美娟. 蒸养条件下矿粉、粉煤灰对高铁相硅酸盐水泥基材料毛细孔和抗侵蚀性能的影响[J]. 硅酸盐通报, 2023, 42(1): 162-169. |
[8] | 李鑫, 杜惠惠, 倪文, 傅平丰, 王飞. KR脱硫渣碱激发矿渣的配比优化及水化特性[J]. 硅酸盐通报, 2023, 42(1): 170-179. |
[9] | 单继雄, 李军, 侯永生, 胡艳民, 刘畅. 钙铝类水滑石对混凝土抗盐冻性能的影响[J]. 硅酸盐通报, 2022, 41(9): 3084-3090. |
[10] | 张啸, 王璜琪, 王栋民. 黄金尾矿制备水泥和混凝土的研究进展[J]. 硅酸盐通报, 2022, 41(9): 3121-2128. |
[11] | 赵雅明, 张振, 王畔, 张明飞. 矿物掺合料对UHPC性能的影响[J]. 硅酸盐通报, 2022, 41(9): 3170-3175. |
[12] | 耿圆洁, 孙丛涛, 孙明, 张余果, 段继周. 水泥基材料氯离子结合机理及影响因素研究综述[J]. 硅酸盐通报, 2022, 41(8): 2604-2617. |
[13] | 王坤, 刘凤东, 杨飞华, 吕民望, 杨露, 王发洲. C-S-H纳米晶核对矿物掺合料复合胶凝材料水化性能的影响研究[J]. 硅酸盐通报, 2022, 41(7): 2352-2359. |
[14] | 张涛, 耿健, 柳根金, 杨余迪, 刘慈军. 水泥-粉煤灰-矿粉-偏高岭土四元胶凝材料氯离子固化机理研究[J]. 硅酸盐通报, 2022, 41(6): 2063-2070. |
[15] | 杨帆, 张友锋, 余姚. 低温养护下矿物掺合料湿喷混凝土力学性能及配比优化研究[J]. 硅酸盐通报, 2022, 41(5): 1589-1598. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||