[1] 缪昌文, 穆 松. 混凝土技术的发展与展望[J]. 硅酸盐通报, 2020, 39(1): 1-11. MIAO C W, MU S. Development and prospect of concrete technology[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(1): 1-11 (in Chinese). [2] 刘 诚, 聂 鑫, 汪家继, 等. 混凝土宏观本构模型研究进展[J]. 建筑结构学报, 2022, 43(1): 29-41. LIU C, NIE X, WANG J J, et al. State-of-the-art of macroscopic constitutive models of concrete[J]. Journal of Building Structures, 2022, 43(1): 29-41 (in Chinese). [3] LI D H, TANG Z L, KANG Q A, et al. Machine learning-based method for predicting compressive strength of concrete[J]. Processes, 2023, 11(2): 390. [4] 王 楠. 回弹法在C50~C60混凝土抗压强度检测应用中的探讨[J]. 建筑结构, 2020, 50(增刊2): 654-657. WANG N. Discussion on application of rebound method in C50~C60 concrete compressive strength inspect[J]. Building Structure, 2020, 50(supplement 2): 654-657 (in Chinese). [5] 郑士举, 刘 辉, 蒋利学. 不同测试方式下混凝土抗压强度对比试验研究[J]. 建筑结构, 2022, 52(8): 105-111. ZHENG S J, LIU H, JIANG L X. Comparative experimental research on concrete compression strength under different testing methods[J]. Building Structure, 2022, 52(8): 105-111 (in Chinese). [6] 曹 斐, 周 彧, 王春晓, 等. 一种改进的支持向量回归的混凝土强度预测方法[J]. 硅酸盐通报, 2021, 40(1): 90-97. CAO F, ZHOU Y, WANG C X, et al. An improved support vector regression method for concrete strength prediction[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(1): 90-97 (in Chinese). [7] 吴贤国, 刘鹏程, 陈虹宇, 等. 基于随机森林的高性能混凝土抗压强度预测[J]. 混凝土, 2022(1): 17-20+24. WU X G, LIU P C, CHEN H Y, et al. Characteristic screening and prediction of high-performance concrete compressive strength based on random forest method[J]. Concrete, 2022(1): 17-20+24 (in Chinese). [8] 徐潇航, 胡张莉, 刘加平, 等. 基于机器学习回归模型的三峡大坝混凝土强度预测[J]. 材料导报, 2023, 37(2): 45-53. XU X H, HU Z L, LIU J P, et al. Concrete strength prediction of the Three Gorges Dam based on machine learning regression model[J]. Materials Reports, 2023, 37(2): 45-53 (in Chinese). [9] 许开成, 毕丽苹, 陈梦成. 基于SPSS回归分析的锂渣混凝土抗压强度预测模型[J]. 建筑科学与工程学报, 2017, 34(1): 15-24. XU K C, BI L P, CHEN M C. Prediction model of compressive strength of lithium slag concrete based on SPSS regression analysis[J]. Journal of Architecture and Civil Engineering, 2017, 34(1): 15-24 (in Chinese). [10] 陈洪根, 龙蔚莹, 李 昕, 等. 基于BP神经网络的粉煤灰混凝土抗压强度预测研究[J]. 建筑结构, 2021, 51(增刊2): 1041-1045. CHEN H G, LONG W Y, LI X, et al. Prediction of compressive strength of fly ash concrete with BP neural network[J]. Building Structure, 2021, 51(supplement 2): 1041-1045 (in Chinese). [11] 高 蔚. 基于深度学习的再生混凝土抗压强度预测[J]. 混凝土, 2018(11): 58-61+70. GAO W. Influencing factors and deep learning prediction model of compression strength of recycled concrete[J]. Concrete, 2018(11): 58-61+70 (in Chinese). [12] CHEN H G, LI X, WU Y Q, et al. Compressive strength prediction of high-strength concrete using long short-term memory and machine learning algorithms[J]. Buildings, 2022, 12(3): 302. [13] 张 静, 刘向东. 混沌粒子群算法优化最小二乘支持向量机的混凝土强度预测[J]. 吉林大学学报(工学版), 2016, 46(4): 1097-1102. ZHANG J, LIU X D. Prediction of concrete strength based on least square support vector machine optimized by chaotic particle swarm optimization[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(4): 1097-1102 (in Chinese). [14] RANJBAR I, TOUFIGH V, BOROUSHAKI M. A combination of deep learning and genetic algorithm for predicting the compressive strength of high-performance concrete[J]. Structural Concrete, 2022, 23(4): 2405-2418. [15] XU Y, WANG J J, XIA A Q, et al. Continuous wavelet analysis of leaf reflectance improves classification accuracy of mangrove species[J]. Remote Sensing, 2019, 11(3): 254. [16] YANG Z F, XIAO H, ZHANG L, et al. Fast determination of oxide content in cement raw meal using NIR spectroscopy with the SPXY algorithm[J]. Analytical Methods, 2019, 11(31): 3936-3942. [17] PAN M Y, ZHOU H N, CAO J Y, et al. Water level prediction model based on GRU and CNN[J]. IEEE Access, 2020, 8: 60090-60100. [18] HUSSAIN B, AFZAL M K, AHMAD S, et al. Intelligent traffic flow prediction using optimized GRU model[J]. IEEE Access, 2021, 9: 100736-100746. [19] XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34. [20] KHALEEL M I. Efficient job scheduling paradigm based on hybrid sparrow search algorithm and differential evolution optimization for heterogeneous cloud computing platforms[J]. Internet of Things, 2023, 22: 100697. [21] MENG K, CHEN C, XIN B. MSSSA: a multi-strategy enhanced sparrow search algorithm for global optimization[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(12): 1828-1847. [22] LI Q Z, LI Z N, SHI Z Y, et al. Magnetic object recognition with magnetic gradient tensor system heading-line surveys based on kernel extreme learning machine and sparrow search algorithm[J]. Measurement, 2022, 203: 111967. [23] 高林钢, 李同春, 林潮宁, 等. 基于改进鲸鱼优化算法的重力坝变形参数反演[J]. 水资源与水工程学报, 2020, 31(3): 193-199. GAO L G, LI T C, LIN C N, et al. Parameter inversion of gravity dam deformation based on improved whale optimization algorithm[J]. Journal of Water Resources and Water Engineering, 2020, 31(3): 193-199 (in Chinese). [24] DUA D, GRAFF C. UCI machine learning repository[DB/OL]. (2020-07-22) [2020-08-03]. http://archive.ics.uci.edu/ml. [25] 李 杨, 刘庆华, 郭天添. 基于CART-SVR模型的混凝土抗压强度预测研究[J]. 混凝土, 2022(8): 40-44. LI Y, LIU Q H, GUO T T. Prediction method of concrete compressive strength based on CART-SVR[J]. Concrete, 2022(8): 40-44 (in Chinese). [26] 张 恺, 尹志刚, 程国敏, 等. 聚羧酸减水剂及不同掺合料对混凝土耐久性的试验研究[J]. 硅酸盐通报, 2018, 37(9): 2974-2978+2984. ZHANG K, YIN Z G, CHENG G M, et al. Experimental study on the durability of concrete with polycarboxylate superplasticizer and different admixtures[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(9): 2974-2978+2984 (in Chinese). [27] 杨泽波, 刘 勇, 陈清蓉, 等.混凝土用矿物掺合料超细化作用机理[J/OL]. 材料导报, 2023(增刊1): 1-9 [2023-04-16]. http://kns.cnki.net/kcms/detail/50.1078.TB.20230207.1554.018.html. YANG Z B, LIU Y, CHEN Q R, et al. Superrefinement mechanism of mineral admixture for concrete[J/OL]. Materials Reports, 2023(supplement 1): 1-9 [2023-04-16]. http://kns.cnki.net/kcms/detail/50.1078.TB.20230207.1554.018.html (in Chinese). [28] LI Q F, SONG Z M. High-performance concrete strength prediction based on ensemble learning[J]. Construction and Building Materials, 2022, 324: 126694. [29] MOON S, MUNIRA C A. Utilization of prior information in neural network training for improving 28-day concrete strength prediction[J]. Journal of Construction Engineering and Management, 2021, 147(5): 04021028. [30] FENG D C, LIU Z T, WANG X D, et al. Machine learning-based compressive strength prediction for concrete: an adaptive boosting approach[J]. Construction and Building Materials, 2020, 230: 117000. |