[1] 李 扬, 王振地, 薛 成, 等. 高原低气压对道路工程混凝土性能的影响及原因[J]. 中国公路学报, 2021, 34(9): 194-202. LI Y, WANG Z D, XUE C, et al. Influence of low air pressure on the performance of concrete in road engineering[J]. China Journal of Highway and Transport, 2021, 34(9): 194-202 (in Chinese). [2] 刘 旭, 陈 歆, 田 波, 等. 低气压环境下水泥混凝土性能研究进展[J]. 硅酸盐学报, 2021, 49(8): 1743-1752. LIU X, CHEN X, TIAN B, et al. Cement concrete properties under low atmospheric pressures: a short review[J]. Journal of the Chinese Ceramic Society, 2021, 49(8): 1743-1752 (in Chinese). [3] 陈华鑫, 王 铜, 何 锐, 等. 高原复杂气候环境对混凝土气孔结构与力学性能的影响[J]. 长安大学学报(自然科学版), 2020, 40(2): 30-37. CHEN H X, WANG T, HE R, et al. Effect of complex climatic environment on pore structure and mechanical properties of concrete[J]. Journal of Chang'an University (Natural Science Edition), 2020, 40(2): 30-37 (in Chinese). [4] 沈凯祺. 考虑高铁简支梁桥下部结构冻融病害及横向变位影响的车桥系统动力响应分析[D]. 北京: 北京交通大学, 2017: 83-84. SHEN K Q. Dynamic response analysis of vehicle-bridge system considering freeze-thaw damage and lateral displacement of substructure of high-speed rail simply supported beam bridge[D]. Beijing: Beijing Jiaotong University, 2017: 83-84 (in Chinese). [5] 匡亚川, 陈煜杰, 冯金仁, 等. 寒冷地区高速铁路桥梁冻融损伤研究[J]. 中国铁道科学, 2019, 40(2): 39-45. KUANG Y C, CHEN Y J, FENG J R, et al. Freezing-thawing damage of high speed railway bridge in cold region[J]. China Railway Science, 2019, 40(2): 39-45 (in Chinese). [6] VALENZA J J, SCHERER G W. Mechanism for salt scaling[J]. Journal of the American Ceramic Society, 2006, 89(4): 1161-1179. [7] 冷发光, 周永祥, 王祖琦, 等. 高性能混凝土发展与应用[J]. 建筑科学, 2018, 34(9): 76-81. LENG F G, ZHOU Y X, WANG Z Q, et al. Development and application of high performance concrete[J]. Building Science, 2018, 34(9): 76-81 (in Chinese). [8] 吴 凯, 施惠生, 徐玲琳, 等. 矿物掺合料调控界面过渡区微结构对混凝土力学性能的影响[J]. 硅酸盐学报, 2017, 45(5): 623-630. WU K, SHI H S, XU L L, et al. Effect of mineral admixture on mechanical properties of concrete by adjusting interfacial transition zone microstructure[J]. Journal of the Chinese Ceramic Society, 2017, 45(5): 623-630 (in Chinese). [9] 王 喆, 王栋民. 不同复合矿物掺合料对混凝土长期性能的影响差异[J]. 硅酸盐通报, 2015, 34(8): 2392-2397. WANG Z, WANG D M. Influence of different multi-mineral admixtures on long period performance of concrete[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(8): 2392-2397 (in Chinese). [10] 李玉平, 王 伟, 章 鹏, 等. 矿物掺合料对页岩陶粒混凝土抗压强度的影响[J]. 湖南大学学报(自然科学版), 2018, 45(6): 72-77. LI Y P, WANG W, ZHANG P, et al. Influence of mineral admixture addition on compressive strength of shale ceramsite concrete[J]. Journal of Hunan University (Natural Sciences), 2018, 45(6): 72-77 (in Chinese). [11] 杭美艳, 杨 冉. 矿物掺合料对泡沫混凝土的性能影响[J]. 硅酸盐通报, 2018, 37(4): 1480-1486. HANG M Y, YANG R. Influence of mineral admixtures on properties of foam concrete[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(4): 1480-1486 (in Chinese). [12] 刘娟红, 宋少民. 粉煤灰和磨细矿渣对高强轻骨料混凝土抗渗及抗冻性能的影响[J]. 硅酸盐学报, 2005, 33(4): 528-532. LIU J H, SONG S M. Effects of fly ash and blast furnace slag on resistance of permeability and freezing of high strength lightweight aggregate concrete[J]. Journal of the Chinese Ceramic Society, 2005, 33(4): 528-532 (in Chinese). [13] YU K Y, JIA M J, YANG Y Z, et al. A clean strategy of concrete curing in cold climate: solar thermal energy storage based on phase change material[J]. Applied Energy, 2023, 331: 120375. [14] 樊启祥, 段亚辉, 王业震, 等. 混凝土保湿养护智能闭环控制研究[J]. 清华大学学报(自然科学版), 2021, 61(7): 671-680. FAN Q X, DUAN Y H, WANG Y Z, et al. Intelligent closed-loop control of concrete moisture levels[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(7): 671-680 (in Chinese). [15] WANG B, LI F H, LI J L, et al. Erosion-resisting characteristics of concrete under freeze-thaw action[J]. Applied Mechanics and Materials, 2013, 351/352: 1596-1600. [16] LU Z, FENG Z G, YAO D D, et al. Freeze-thaw resistance of ultra-high performance concrete: dependence on concrete composition[J]. Construction and Building Materials, 2021, 293: 123523. [17] ZHANG S L, QI X Q, GUO S Y, et al. A systematic research on foamed concrete: the effects of foam content, fly ash, slag, silica fume and water-to-binder ratio[J]. Construction and Building Materials, 2022, 339: 127683. [18] MASON R L, GUNST R F, HESS J L. Statistical design and analysis of experiments Ⅱ designs and analyses for fitting response surfaces[J]. Quality & Reliability Engineering International, 2010, 6(4): 308-309. [19] 李 典, 冯国瑞, 郭育霞, 等. 基于响应面法的充填体强度增长规律分析[J]. 煤炭学报, 2016, 41(2): 392-398. LI D, FENG G R, GUO Y X, et al. Analysis on the strength increase law of filling material based on response surface method[J]. Journal of China Coal Society, 2016, 41(2): 392-398 (in Chinese). [20] 常嘉慧, 郝 伟. 高海拔地区在役混凝土桥梁安全预警研究[J]. 中国安全生产科学技术, 2020, 16(3): 111-117. CHANG J H, HAO W. Study on safety early-warning of in-service concrete bridges in high-altitude areas[J]. Journal of Safety Science and Technology, 2020, 16(3): 111-117 (in Chinese). [21] KUMAR R. Modified mix design and statistical modelling of lightweight concrete with high volume micro fines waste additive via the Box-Behnken design approach[J]. Cement and Concrete Composites, 2020, 113: 103706. [22] 李志刚, 李家和, 张洪贵. 粉煤灰与矿渣复合掺合料对混凝土强度影响[J]. 低温建筑技术, 2009, 31(4): 17-19. LI Z G, LI J H, ZHANG H G. Influence of fly ash and ground slag admixture on strength of concrete[J]. Low Temperature Architecture Technology, 2009, 31(4): 17-19 (in Chinese). [23] 李懿卿, 牛荻涛, 宋 华. 复合矿物掺合料混凝土力学性能的试验研究[J]. 混凝土, 2009(3): 47-49. LI Y Q, NIU D T, SONG H. Effect of multi-mineral admixtures on mechanics properties of concrete[J]. Concrete, 2009(3): 47-49 (in Chinese). [24] ZHENG X Y, WANG Y R, ZHANG S Q, et al. Research progress of the thermophysical and mechanical properties of concrete subjected to freeze-thaw cycles[J]. Construction and Building Materials, 2022, 330: 127254. [25] 何晓莹, 王瑞骏, 陶 喆, 等. 低掺量粉煤灰再生混凝土抗冻耐久性试验研究[J]. 硅酸盐通报, 2018, 37(11): 3522-3527. HE X Y, WANG R J, TAO Z, et al. Experimental study on frost-resistant durability of recycled concrete with low content of fly ash[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(11): 3522-3527 (in Chinese). [26] 史才军, 曹芷杰, 谢昭彬. 再生混凝土力学性能的研究进展[J]. 材料导报, 2016, 30(23): 96-103+126. SHI C J, CAO Z J, XIE Z B. Research progress in the mechanical properties of recycled aggregate concrete[J]. Materials Reports, 2016, 30(23): 96-103+126 (in Chinese). [27] 刘斯凤, 孙 伟, 林 玮, 等. 掺天然超细混合材高性能混凝土的制备及其耐久性研究[J]. 硅酸盐学报, 2003, 31(11): 1080-1085. LIU S F, SUN W, LIN W, et al. Preparation and durability of a high performance concrete with natural ultra-fine particles[J]. Journal of the Chinese Ceramic Society, 2003, 31(11): 1080-1085 (in Chinese). |