[1] 尹飞龙, 欧阳东, 温喜廉, 等. 海砂与河砂、尾砂作为建筑用砂的比较研究[J]. 混凝土, 2011(12): 73-75+78. YIN F L, OUYANG D, WEN X L, et al. Comparative study of sea sand, river sand and tailing sand which using as building sand[J]. Concrete, 2011(12): 73-75+78 (in Chinese). [2] 周继凯, 何 旭, 王泽宇, 等. 海水海砂混凝土与潜在危害研究进展[J]. 科学技术与工程, 2018, 18(24): 179-187. ZHOU J K, HE X, WANG Z Y, et al. Research progress on seawater and sea sand concrete and its potential hazards[J]. Science Technology and Engineering, 2018, 18(24): 179-187 (in Chinese). [3] 关国浩, 王学志, 贺晶晶. 海水海砂混凝土研究进展[J]. 硅酸盐通报, 2022, 41(5): 1483-1493. GUAN G H, WANG X Z, HE J J. Research progress of seawater sea-sand concrete[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(5): 1483-1493 (in Chinese). [4] 刘西拉, 苗澍柯. 混凝土结构中的钢筋腐蚀及其耐久性计算[J]. 土木工程学报, 1990, 23(4): 69-78. LIU X L, MIAO S K. Steel corrosion and the durability calculation of reinforced concrete structures[J]. China Civil Engineering Journal, 1990, 23(4): 69-78 (in Chinese). [5] EGÜEZ ÁLAVA H, DE BELIE N, DE SCHUTTER G. Proposed mechanism for the formation of oxychloride crystals during sodium chloride application as a deicer salt in carbonated concrete[J]. Construction and Building Materials, 2016, 109: 188-197. [6] 刘 伟, 蒲正霖, 孙红芳, 等. 海砂中氯离子含量的影响因素研究[J]. 建筑材料学报, 2016, 19(5): 921-925+932. LIU W, PU Z L, SUN H F, et al. Influence factors of chloride content in dredged marine sand[J]. Journal of Building Materials, 2016, 19(5): 921-925+932 (in Chinese). [7] LI H, FARZADNIA N, SHI C J. The role of seawater in interaction of slag and silica fume with cement in low water-to-binder ratio pastes at the early age of hydration[J]. Construction and Building Materials, 2018, 185: 508-518. [8] LAM W L, SHEN P L, CAI Y M, et al. Effects of seawater on UHPC: macro and microstructure properties[J]. Construction and Building Materials, 2022, 340: 127767. [9] 李田雨, 张玉梅, 刘小艳, 等. 海水海砂高性能海工混凝土力学及早期工作性研究[J]. 混凝土, 2019(11): 1-5. LI T Y, ZHANG Y M, LIU X Y, et al. Research on the preparation and durability of brine marine sand high performence concrete[J]. Concrete, 2019(11): 1-5 (in Chinese). [10] PAN D, YASEEN S A, CHEN K Y, et al. Study of the influence of seawater and sea sand on the mechanical and microstructural properties of concrete[J]. Journal of Building Engineering, 2021, 42: 103006. [11] GUO Q Y, CHEN L, ZHAO H J, et al. The effect of mixing and curing sea water on concrete strength at different ages[J]. MATEC Web of Conferences, 2018, 142: 02004. [12] XIAO J Z, QIANG C B, NANNI A, et al. Use of sea-sand and seawater in concrete construction: current status and future opportunities[J]. Construction and Building Materials, 2017, 155: 1101-1111. [13] ETXEBERRIA M, GONZALEZ-COROMINAS A, PARDO P. Influence of seawater and blast furnace cement employment on recycled aggregate concretes’ properties[J]. Construction and Building Materials, 2016, 115: 496-505. [14] YOUNIS A, EBEAD U, SURANENI P, et al. Performance of seawater-mixed recycled-aggregate concrete[J]. Journal of Materials in Civil Engineering, 2020, 32(1): 04019331. [15] LIU J, QIU Q W, CHEN X C, et al. Degradation of fly ash concrete under the coupled effect of carbonation and chloride aerosol ingress[J]. Corrosion Science, 2016, 112: 364-372. [16] 钱维民, 苏 骏, 赵家玉, 等. 超低温作用对超高韧性水泥基复合材料断裂性能的影响[J]. 建筑材料学报, 2022, 25(9): 901-909+916. QIAN W M, SU J, ZHAO J Y, et al. Effect of ultra-low temperature on fracture behavior of ultra-high toughness cementitious composites[J]. Journal of Building Materials, 2022, 25(9): 901-909+916 (in Chinese). [17] 杨 燕, 谭康豪, 覃英宏. 混凝土内氯离子扩散影响因素的研究综述[J]. 材料导报, 2021, 35(13): 13109-13118. YANG Y, TAN K H, QIN Y H. Review of research on influencing factors of chloride diffusion in concrete[J]. Materials Reports, 2021, 35(13): 13109-13118 (in Chinese). [18] 王胜年, 曾俊杰, 范志宏. 基于长期暴露试验的海工高性能混凝土耐久性分析[J]. 土木工程学报, 2021, 54(10): 82-89. WANG S N, ZENG J J, FAN Z H. Analysis on durability of marine HPC based on long-term exposure experiment[J]. China Civil Engineering Journal, 2021, 54(10): 82-89 (in Chinese). [19] 徐枫尧, 梁育祯, 戴 蒙, 等. 海水中氯离子对混凝土耐久性影响的研究[J]. 现代盐化工, 2022, 49(3): 56-58. XU F Y, LIANG Y Z, DAI M, et al. Study on the influence of chloride ion in seawater on the durability of concrete[J]. Jiangsu Salt Science & Technology, 2022, 49(3): 56-58 (in Chinese). [20] 宋旭艳, 姜正平, 韩静云, 等. 海砂混凝土中钢筋锈蚀情况研究[J]. 混凝土与水泥制品, 2019(9): 19-23. SONG X Y, JIANG Z P, HAN J Y, et al. Study on corrosion of steel bars in sea sand concrete[J]. China Concrete and Cement Products, 2019(9): 19-23 (in Chinese). [21] 苏红艳, 宋平新. 海水海砂钢纤维混凝土的基本力学性能[J]. 混凝土与水泥制品, 2020(3): 55-59. SU H Y, SONG P X. Basic mechanical properties of seawater sea-sand steel fiber concrete[J]. China Concrete and Cement Products, 2020(3): 55-59 (in Chinese). [22] 李师财, 于 泳, 金祖权. 海水海砂混凝土力学性能与耐久性研究综述[J]. 硅酸盐通报, 2020, 39(12): 3743-3752. LI S C, YU Y, JIN Z Q. Review on mechanical properties and durability of seawater and sea-sand concrete[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(12): 3743-3752 (in Chinese). [23] YOUNIS A, EBEAD U, SURANENI P, et al. Fresh and hardened properties of seawater-mixed concrete[J]. Construction and Building Materials, 2018, 190: 276-286. [24] 宋哲航, 罗志明, 洪 军, 等. 硫酸盐与碳酸盐作用下碳硫硅钙石的生成研究[J]. 混凝土世界, 2022(9): 16-19. SONG Z H, LUO Z M, HONG J, et al. Study on the formation of thaumasite by the interaction of sulfate and carbonate[J]. China Concrete, 2022(9): 16-19 (in Chinese). [25] 刘娟红, 邹 敏, 李 康, 等. 碳酸盐环境下水泥基材料性能劣化与腐蚀破坏的研究进展[J/OL]. 材料导报, 2023(19): 1-16 [2023-05-14]. http://kns.cnki.net/kcms/detail/50.1078.TB.20220928.1552.012.html. LIU J H, ZOU M, LI K, et al. Research progress on performance degradation and corrosion failure of cement-based materials in carbonate environment[J/OL]. Materials Reports, 2023(19): 1-16 [2023-05-14]. http://kns.cnki.net/kcms/detail/50.1078.TB.20220928.1552.012.html (in Chinese). |