[1] 周 鑫, 高福宁, 任希庆, 等. CFB粉煤灰路基填料无侧限抗压强度试验研究[J]. 公路交通科技, 2021, 38(8): 30-36. ZHOU X, GAO F N, REN X Q, et al. Experimental study on unconfined compressive strength of CFB fly ash as subgrade material[J]. Journal of Highway and Transportation Research and Development, 2021, 38(8): 30-36 (in Chinese). [2] 杜世勋, 李晓姣, 袁 进, 等. 山西省循环流化床粉煤灰环境风险评估及管控建议[J]. 环境保护科学, 2022, 48(1): 21-24+38. DU S X, LI X J, YUAN J, et al. Environmental risk assessment and management suggestions of circulating fluidized bed fly ash in Shanxi Province[J]. Environmental Protection Science, 2022, 48(1): 21-24+38 (in Chinese). [3] 宁 美, 王 智, 钱觉时, 等. 固硫灰渣的特性及其与现行标准的适应性[J]. 硅酸盐通报, 2019, 3 8(3): 688-693+701. NING M, WANG Z, QIAN J S, et al. Characteristics of fluidized bed coal combustion fly ash and slag and its adaptability with current standards[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(3): 688-693+701 (in Chinese). [4] 吴金龙, 程乐鸣, 施正伦, 等. CFB高钙脱硫灰渣制备硫铝酸盐水泥熟料试验研究[J]. 能源工程, 2021(4): 32-36+42. WU J L, CHENG L M, SHI Z L, et al. Experimental research on preparation of sulphoaluminate cement from circulating fluidized bed desulfurization ash[J]. Energy Engineering, 2021(4): 32-36+42 (in Chinese). [5] 赵计辉, 王栋民, 惠 飞, 等. 循环流化床灰渣作为水泥混合材的研究及性能改善[J]. 科学技术与工程, 2014, 14(18): 129-134. ZHAO J H, WANG D M, HUI F, et al. Study on the performance improvement of the cement blending circulating fluidized bed ash and slag[J]. Science Technology and Engineering, 2014, 14(18): 129-134 (in Chinese). [6] 张家家, 周明凯, 李北星. CFB灰渣制备轻质混凝土的性能研究[J]. 新型建筑材料, 2020, 47(12): 10-14+74. ZHANG J J, ZHOU M K, LI B X. Research on the performance of lightweight concrete made from CFB ash and slag[J]. New Building Materials, 2020, 47(12): 10-14+74 (in Chinese). [7] CHEN X, ZHANG J C, GUO W B, et al. Occurrence and migration laws of water in circulating fluidized bed bottom slag mortar and their influences on mortar properties[J]. Construction and Building Materials, 2022, 315: 125748. [8] 王 智. 流化床燃煤固硫渣特性及其建材资源化研究[D]. 重庆: 重庆大学, 2002: 40-41. WANG Z. Study on properties and utilization in building materials of bottom ashes from circulating fluidized bed combustion[D]. Chongqing: Chongqing University, 2002: 40-41 (in Chinese). [9] 高福宁, 岳 峰, 刘 耀, 等. CFB粉煤灰在路基填料中的工程特性研究[J]. 山西交通科技, 2021(3): 19-22. GAO F N, YUE F, LIU Y, et al. Engineering characteristics of CFB fly ash in subgrade filling[J]. Shanxi Science & Technology of Communications, 2021(3): 19-22 (in Chinese). [10] 宋远明, 徐惠忠, 王美娥. 流化床燃煤固硫灰渣膨胀控制因素研究[J]. 粉煤灰综合利用, 2010, 23(1): 3-5. SONG Y M, XU H Z, WANG M E. Study on controlling factors of expansion of FBC ashes[J]. Fly Ash Comprehensive Utilization, 2010, 23(1): 3-5 (in Chinese). [11] 郑洪伟. 流化床燃煤固硫灰渣中无水石膏作用研究[D]. 重庆: 重庆大学, 2008: 96-97+54-55. ZHENG H W. Study on behavior of anhydrite in fluidized bed combustion ashes[D]. Chongqing: Chongqing University, 2008: 96-97+54-55 (in Chinese). [12] 周明凯, 叶 青, 陈 潇, 等. CFB灰渣抹灰砂浆的组成设计与性能研究[J]. 硅酸盐通报, 2022, 41(2): 425-432+449. ZHOU M K, YE Q, CHEN X, et al. Composition design and performance of CFB fly ash and CFB slag plastering mortar[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 425-432+449 (in Chinese). [13] 张 铁. 膨胀土力学性质分析及处置方案研究[J]. 四川建材, 2020, 46(7): 79-80. ZHANG T. Analysis of mechanical properties of expansive soil and study on treatment scheme[J]. Sichuan Building Materials, 2020, 46(7): 79-80 (in Chinese). [14] 宋远明. 流化床燃煤固硫灰渣水化研究[D]. 重庆: 重庆大学, 2007: 30-32+97+123. SONG Y M. Study on hydration of fluidized bed combustion ashes[D]. Chongqing: Chongqing University, 2007: 30-32+97+123 (in Chinese). [15] 王 露, 刘数华. 钙矾石相的研究综述[J]. 混凝土, 2013(8): 83-86+90. WANG L, LIU S H. Research review on ettringite phase[J]. Concrete, 2013(8): 83-86+90 (in Chinese). [16] 钱觉时, 余金城, 孙化强, 等. 钙矾石的形成与作用[J]. 硅酸盐学报, 2017, 45(11): 1569-1581. QIAN J S, YU J C, SUN H Q, et al. Formation and function of ettringite in cement hydrates[J]. Journal of the Chinese Ceramic Society, 2017, 45(11): 1569-1581 (in Chinese). [17] 杨和平, 赵鹏程, 郑健龙. 膨胀土用作路基填料的分类指标体系研究[J]. 岩土工程学报, 2009, 31(2): 194-202. YANG H P, ZHAO P C, ZHENG J L. Classification of expansive soils used as embankment fills[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 194-202 (in Chinese). [18] 杨久俊, 管宗甫, 余海燕, 等. 钙矾石在湿热环境下结构变异性的研究[J]. 硅酸盐学报, 1997, 25(4): 470-474. YANG J J, GUAN Z F, YU H Y, et al. The structure variance of ettringite in different hydrothermal conditions[J]. Journal of the Chinese Ceramic Society, 1997, 25(4): 470-474. (in Chinese) [19] 陈文怡, 涂 浩. TG-DSC技术在水泥研究中的应用[J]. 分析仪器, 2012(2): 55-58. CHEN W Y, TU H. Application of TG-DSC technique in the study of cement[J]. Analytical Instrumentation, 2012(2): 55-58 (in Chinese). [20] 颜哩哩, 周 文, 尤 迁, 等. 基于DSC-TG的钙矾石半定量分析方法[J]. 新型建筑材料, 2015, 42(2): 41-43. YAN L L, ZHOU W, YOU Q, et al. Semi quantifying ettringite by DSC-TG method[J]. New Building Materials, 2015, 42(2): 41-43 (in Chinese). [21] 臧浩宇, 刘 庆, 王俊祥, 等. 水泥水化产物中钙矾石定量表征方法研究概况[J]. 硅酸盐通报, 2018, 37(8): 2478-2482. ZANG H Y, LIU Q, WANG J X, et al. Research overview on quantitative characterization methods for ettringite in cement hydration products[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(8): 2478-2482 (in Chinese). [22] 汪 潇, 刘 强, 杨留栓, 等. 钛石膏颗粒物特性及其热重分析[J]. 硅酸盐通报, 2014, 33(1): 212-215+220. WANG X, LIU Q, YANG L S, et al. Analysis of particle characteristics and TG of titanium gypsum[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(1): 212-215+220 (in Chinese). [23] ZHOU M K, CHEN P, CHEN X, et al. Study on hydration characteristics of circulating fluidized bed combustion fly ash (CFBCA)[J]. Construction and Building Materials, 2020, 251: 118993. [24] CHEN X, ZHANG J C, LU M Y, et al. Study on the effect of calcium and sulfur content on the properties of fly ash based geopolymer[J]. Construction and Building Materials, 2022, 314: 125650. |