[1] DAVIDOVITS J. Geopolymers: inorganic polymeric new materials[J]. Journal of Thermal Analysis, 1991, 37(8): 1633-1656. [2] SHAISE K J, YASHIDA N, GIRJA K. Effect of source materials, additives on the mechanical properties and durability of fly ash and fly ash-slag geopolymer mortar: a review[J]. Construction and Building Materials, 2021, 280: 122443. [3] 边 伟, 马昆林, 龙广成, 等. 碱激发矿渣粉煤灰透水混凝土性能研究[J]. 铁道科学与工程学报, 2020, 17(2): 349-357. BIAN W, MA K L, LONG G C, et al. Study on properties of pervious concrete with alkali-activated slag-fly ash[J]. Journal of Railway Science and Engineering, 2020, 17(2): 349-357 (in Chinese). [4] 卞立波, 董 申, 陶 志. 碱激发矿渣/粉煤灰多孔混凝土基本性能试验研究[J]. 材料导报, 2020, 34(s2): 1299-1303. BIAN L B, DONG S, TAO Z. Basic properties of alkali activated slag/fly ash pervious concrete[J]. Materials Reports, 2020, 34(s2): 1299-1303 (in Chinese). [5] 宋学锋, 朱娟娟. 粉煤灰-矿渣复合基地质聚合物力学性能的影响因素[J]. 西安建筑科技大学学报(自然科学版), 2016, 48(1): 128-132. SONG X F, ZHU J J. The factors affecting the mechanical properties of fly ash and slag based geopolymer[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2016, 48(1): 128-132 (in Chinese). [6] SUN R J, FANG C, ZHANG H Z. Chemo-mechanical properties of alkali-activated slag/fly ash paste incorporating white mud[J]. Construction and Building Materials, 2021, 291: 123312. [7] 庄培镇, 马玉玮, 罗甜恬, 等. 碱激发矿渣/粉煤灰净浆/砂浆力学性能研究[J]. 硅酸盐通报, 2022, 41(10): 3578-3589. ZHUANG P Z, MA Y W, LUO T T, et al. Mechanical properties of alkali-activated slag/fly ash paste/mortar[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(10): 3578-3589 (in Chinese). [8] 孔凡龙, 刘 泽, 张俱嘉, 等. 矿渣-粉煤灰基地质聚合物性能与微观结构的研究[J]. 电子显微学报, 2016, 35(3): 229-234. KONG F L, LIU Z, ZHANG J J, et al. Rheological behavior, strength, and microstructure of geopolymers based on silicate-activated slag-CFA[J]. Journal of Chinese Electron Microscopy Society, 2016, 35(3): 229-234 (in Chinese). [9] 詹疆淮, 李宏波, 傅 博, 等. 不同碱当量、粉煤灰和矿渣掺量对碱激发粉煤灰-矿渣地聚物力学性能及微观结构的影响[J]. 科学技术与工程, 2021, 21(28): 12218-12224. ZHAN J H, LI H B, FU B, et al. Effect of different alkali equivalent, fly ash and slag content on the mechanical properties and microstructure of alkali-activated fly ash-slag geopolymer[J]. Science Technology and Engineering, 2021, 21(28): 12218-12224 (in Chinese). [10] 杨 达, 庞来学, 宋 迪, 等. 粉煤灰对碱激发矿渣/粉煤灰体系的作用机理研究[J]. 硅酸盐通报, 2021, 40(9): 3005-3011. YANG D, PANG L X, SONG D, et al. Reaction mechanism of fly ash in alkali-activated slag/fly ash system[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(9): 3005-3011 (in Chinese). [11] 黄 华, 郭梦雪, 张 伟, 等. 粉煤灰-矿渣基地聚物混凝土力学性能与微观结构[J]. 哈尔滨工业大学学报, 2022, 54(3): 74-84. HUANG H, GUO M X, ZHANG W, et al. Mechanical property and microstructure of geopolymer concrete based on fly ash and slag[J]. Journal of Harbin Institute of Technology, 2022, 54(3): 74-84 (in Chinese). [12] OSAMA A M. Effect of immersing geopolymer slag-fly ash mortar in sulfuric acid on strength development and stability of mass[J]. Construction and Building Materials, 2022, 341: 127786. [13] ESKINDER D S, LI W W, LIU J, et al. Self-healing recovery and micro-structural properties of slag/fly-ash based engineered cementitious composites under chloride environment and tidal exposure[J]. Cement and Concrete Composites, 2022, 134: 104789. [14] 王海荣, 朱志铎, 浦少云, 等. 碱激发粉煤灰-矿渣固化镉污染土的影响因素分析[J]. 东南大学学报(自然科学版), 2021, 51(6): 1025-1032. WANG H R, ZHU Z D, PU S Y, et al. Analysis on influencing factors of cadmium contaminated soil solidified by alkali-activated fly ash-slag[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(6): 1025-1032 (in Chinese). [15] 张津津, 李 博, 余 闯, 等. 矿渣-粉煤灰地聚合物固化砂土力学特性研究[J]. 岩土力学, 2022, 43(9): 2421-2430. ZHANG J J, LI B, YU C, et al. Mechanical properties of slag-fly ash based geopolymer stabilized sandy soil[J]. Rock and Soil Mechanics, 2022, 43(9): 2421-2430 (in Chinese). [16] 杨振甲, 何 猛, 吴 杨, 等. 矿渣-粉煤灰地聚物固化淤泥力学性能和路用性能研究[J]. 硅酸盐通报, 2022, 41(2): 693-703+724. YANG Z J, HE M, WU Y, et al. Mechanical properties and road performance of slag-fly ash geopolymer stabilized sludge[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 693-703+724 (in Chinese). [17] 万宗华, 张文芹, 刘志超, 等. 电石渣-矿渣复合胶凝材料性能研究[J]. 硅酸盐通报, 2022, 41(5): 1704-1714. WAN Z H, ZHANG W Q, LIU Z C, et al. Properties of carbide slag-slag composite cementitious material[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(5): 1704-1714 (in Chinese). [18] 贺行洋, 郑正旗, 苏 英, 等. 电石渣激发磷渣-矿渣-水泥复合胶凝材料的性能研究[J]. 硅酸盐通报, 2019, 38(3): 889-895. HE X Y, ZHENG Z Q, SU Y, et al. Study on the properties of phosphorous slag-blast furnace slag-cement composite cementitious materials activated by acetylene slag[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(3): 889-895 (in Chinese). [19] 时 松, 刘长武, 吴海宽, 等. 粉煤灰-电石渣双掺改性高水充填材料物理力学性能研究[J]. 材料导报, 2021, 35(7): 7027-7032. SHI S, LIU C W, WU H K, et al. Study on physical and mechanical properties of modified high water filling material with fly ash and calcium carbide slag[J]. Materials Reports, 2021, 35(7): 7027-7032 (in Chinese). [20] 陈永贵, 朱申怡, 谭邦宏, 等. 电石渣/偏高岭土固化铜污染土淋滤特性试验[J]. 同济大学学报(自然科学版), 2018, 46(2): 182-187. CHEN Y G, ZHU S Y, TAN B H, et al. Leaching characteristic of solidification/stabilization for Cu2+ contaminated soils with carbide slag and metakaolin[J]. Journal of Tongji University (Natural Science), 2018, 46(2): 182-187 (in Chinese). [21] 陈永贵, 潘 侃, 谭邦宏, 等. 电石渣/偏高岭土固化铜污染土的浸泡试验研究[J]. 中南大学学报(自然科学版), 2018, 49(3): 678-683. CHEN Y G, PAN K, TAN B H, et al. Soaking experimental study on solidification/stabilization of Cu2+ contaminated soils with carbide slag and metakaolin[J]. Journal of Central South University (Science and Technology), 2018, 49(3): 678-683 (in Chinese). [22] LI W T, YI Y L, ANAND J P. Comparing carbide sludge-ground granulated blastfurnace slag and ordinary Portland cement: different findings from binder paste and stabilized clay slurry[J]. Construction and Building Materials, 2022, 321: 126382. [23] 张建辉, 赵嘉鑫, 陈继才, 等. 碱激发磷渣基胶凝材料的性能及微观结构分析[J]. 硅酸盐通报, 2019, 38(9): 2992-2998. ZHANG J H, ZHAO J X, CHEN J C, et al. Performance and microstructure analysis of alkali-activated phosphorous slag based cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(9): 2992-2998 (in Chinese). [24] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 水泥标准稠度用水量、凝结时间、安定性检验方法: GB/T 1346—2011[S]. 北京: 中国标准出版社, 2012. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, National Standardization Administration of China. Cement standard consistency water consumption, setting time, stability test method: GB/T 1346—2011[S]. Beijing: Standards Press of China, 2012 (in Chinese). [25] 马鹏传, 李 兴, 温振宇, 等. 粉煤灰的活性激发与机理研究进展[J]. 无机盐工业, 2021, 53(10): 28-35. MA P C, LI X, WEN Z Y, et al. Research progress on activation and mechanism of fly ash[J]. Inorganic Chemicals Industry, 2021, 53(10): 28-35 (in Chinese). [26] YU P, KIRKPATRICK R J, POE B, et al. Structure of calcium silicate hydrate (C-S-H): near-, mid-, and far-infrared spectroscopy[J]. Journal of the American Ceramic Society, 2004, 82(3): 742-748. [27] 张玲峰, 韩建德, 刘伟庆, 等. 大掺量矿渣水泥砂浆碳化过程研究[J]. 硅酸盐通报, 2015, 34(3): 591-596. ZHANG L F, HAN J D, LIU W Q, et al. Research on carbonation progress of mortar containing high amounts of BFS[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(3): 591-596 (in Chinese). [28] 朋改非, 王金羽, CHAN Y N S, 等. 火灾高温下硬化水泥浆的化学分解特征[J]. 南京信息工程大学学报(自然科学版), 2009, 1(1): 76-81. PENG G F, WANG J Y, CHAN Y N S, et al. Chemical decomposition characteristics of hardened cement paste subjected to high temperature of fire[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2009, 1(1): 76-81 (in Chinese). [29] 杨南如, 岳文海. 无机非金属材料图谱手册[M]. 武汉: 武汉工业大学出版社, 2000: 245-267. YANG N R, YUE W H. The handbook of inorganic matalloid materials atlas[M]. Wuhan: Wuhan University of Technology Press, 2000: 245-267(in Chinese). [30] CHEN J J, SORELLI L, VANDAMME M, et al. A coupled nanoindentation/SEM-EDS study on low water/cement ratio Portland cement paste: evidence for C-S-H/Ca(OH)2 Nanocomposites[J]. Journal of the American Ceramic Society, 2010, 93(5) 1484-1493. [31] PRADIP N, PRABIR K S. Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition[J]. Construction and Building Materials, 2014, 66: 163-171. [32] LI C, SUN H H, LI L T. A review: the comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements[J]. Cement and Concrete Research, 2010, 40(9): 1341-1349. [33] SUN B B, YE G, SCHUTTER G D. A review: reaction mechanism and strength of slag and fly ash-based alkali-activated materials[J]. Construction and Building Materials, 2022, 326: 126843. [34] SINGH N B, MIDDENDORF B. Geopolymers as an alternative to Portland cement: an overview[J]. Construction and Building Materials, 2020, 237: 117455. |