[1] 马宏强, 易 成, 朱红光, 等. 煤矸石集料混凝土抗压强度及耐久性能[J]. 材料导报, 2018, 32(14): 2390-2395. MA H Q, YI C, ZHU H G, et al. Compressive strength and durability of coal gangue aggregate concrete[J]. Materials Review, 2018, 32(14): 2390-2395 (in Chinese). [2] JIN Y X, LIU Z, HAN L, et al. Synthesis of coal-analcime composite from coal gangue and its adsorption performance on heavy metal ions[J]. Journal of Hazardous Materials, 2022, 423: 127027. [3] ZHANG Y, LING T C. Reactivity activation of waste coal gangue and its impact on the properties of cement-based materials: a review[J]. Construction and Building Materials, 2020, 234: 117424. [4] 李 振, 雪 佳, 朱张磊, 等. 煤矸石综合利用研究进展[J]. 矿产保护与利用, 2021, 41(6): 165-178. LI Z, XUE J, ZHU Z L, et al. Research progress on comprehensive utilization of coal gangue[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 165-178 (in Chinese). [5] 李化建, 孙恒虎, 肖雪军. 煤矸石质硅铝基胶凝材料的试验研究[J]. 煤炭学报, 2005, 30(6): 778-782. LI H J, SUN H H, XIAO X J. Study on gangue-containing aluminosilicate based cementitious materials[J]. Journal of China Coal Society, 2005, 30(6): 778-782 (in Chinese). [6] 郭 伟. 煤矸石的活性激发及活性评价方法的探讨[D]. 南京: 南京工业大学, 2005. GUO W. Research on coal gangue activation and its activity evaluation method[D]. Nanjing: Nanjing University of Technology, 2005 (in Chinese). [7] 姚苏琴, 查文华, 刘新权, 等. 萍乡废弃煤矸石理化特性及热活化性能研究[J]. 硅酸盐通报, 2021, 40(7): 2280-2287. YAO S Q, ZHA W H, LIU X Q, et al. Physicochemical and thermal activation properties of waste coal gangue in Pingxiang mining area[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(7): 2280-2287 (in Chinese). [8] 宋旭艳, 张 康, 韩静云, 等. 热活化煤矸石的火山灰效应及其对水泥性能的影响[J]. 材料导报, 2011, 25(22): 118-121+129. SONG X Y, ZHANG K, HAN J Y, et al. Effect of thermal activated coal gangue on pozzolanic effect and cement properties[J]. Materials Review, 2011, 25(22): 118-121+129 (in Chinese). [9] 吴 红, 孔德顺, 张绪勇, 等. 六盘水矿区煤矸石理化特性及热活化研究[J]. 硅酸盐通报, 2016, 35(11): 3814-3818. WU H, KONG D S, ZHANG X Y, et al. Physicochemical properties and thermal activation of coal gangue in Liupanshui mining area[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(11): 3814-3818 (in Chinese). [10] 张长森, 邓育新, 吴其胜. 微波活化煤矸石反应活性及胶凝性能[J]. 环境工程学报, 2013, 7(8): 3170-3174. ZHANG C S, DENG Y X, WU Q S. Reactivity and cementitious properties of coal gangue by microwave irradiation[J]. Chinese Journal of Environmental Engineering, 2013, 7(8): 3170-3174 (in Chinese). [11] 李永靖, 曹 爽, 邢 洋, 等. 煤矸石骨料混凝土的干燥收缩性能试验研究[J]. 混凝土, 2016(11): 95-97. LI Y J, CAO S, XING Y, et al. Experimental study on the drying shrinkage performance of the concrete with coal gangue aggregate[J]. Concrete, 2016(11): 95-97 (in Chinese). [12] MICHA A G, MAREK Z. Depth-sensing indentation method for evaluation of efficiency of secondary cementitious materials[J]. Cement and Concrete Research, 2004, 34(4): 721-724. [13] GIAN D S, PIERPAOLO T. Mechanical durability of a polymer concrete: a Vickers indentation study of the strength degradation process[J]. Construction and Building Materials, 2004, 18(8): 561-566. [14] 徐 鑫, 张鸿儒, 季 韬, 等. 再生细骨料含水状态对砂浆性能的影响[J]. 硅酸盐通报, 2022, 41(9): 3036-3046+3058. XU X, ZHANG H R, JI T, et al. Effect of moisture state of recycled fine aggregate on properties of mortar[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(9): 3036-3046+3058 (in Chinese). [15] ZHANG Z Q, ZHANG B, YAN P Y. Comparative study of effect of raw and densified silica fume in the paste, mortar and concrete[J]. Construction and Building Materials, 2016, 105: 82-93. [16] ABDUL Q, ATTA-UR-REHMAN, HONG G K, et al. Influence of the surface roughness of crushed natural aggregates on the microhardness of the interfacial transition zone of concrete with mineral admixtures and polymer latex[J]. Construction and Building Materials, 2018, 168: 946-957. |